8

Bearings

Section Outline Page 8.1 ROLLING ELEMENT BEARINGS FOR ROTATING ELECTRICAL MACHINES...... 8-3 8.2 8.3 NSK numbering system......8-11 8.4 8.5 8.6 8.7 UNDERSTANDING AND ADJUSTING THRUST ROLLING BEARING SYSTEMS 8.8 8.9

Disclaimer: The information in this document was carefully prepared and is believed to be correct, but EASA makes no warranties respecting it and disclaims any responsibility or liability of any kind for any loss or damage as a consequence of anyone's use of or reliance upon such information.

8.10	BEARING REPAIR AND END PLAY ADJUSTMENT	
	Repairing sleeve bearings	
	Procedures for checking end play in ball bearing machines	8-49
8.11	REFERENCED STANDARDS	

8.1 ROLLING ELEMENT BEARINGS FOR ROTATING ELECTRICAL MACHINES

By E. Steve Darby (deceased) Darby Electric Co., Inc. Anderson, SC

Ball and roller bearings (rolling bearings) are manufactured to very rigid tolerance specifications and must be treated as precision parts to insure that they do not fail prematurely. ANSI/ABMA Std. 20 specifies boundary dimensions, tolerance classes, and internal clearance for ball and roller bearings. ISO bearing standards are produced by Technical Committee 4 (TC4) and subcommittees (SC) 4, 5, 6, 7, 8, 9 and 11. Much of the information regarding dimensions, tolerances and clearances is contained in ISO 15, ISO 104 and ISO 113.

BOUNDARY DIMENSIONS

The ID, OD and width of bearings are standardized metric dimensions with the last two digits in the bearings nomenclature representing the bore size. Beginning with a 20 mm bore, the last two digits equal the bore in mm divided by 5. The smallest internal diameter interval is, therefore, 5 mm. This permits the two-digit value to span a bore range from 20 mm (04) to 480 mm (96). This system is used on all types of rolling element bearings.

TOLERANCE CLASSES

The tolerance classes specified in the ABMA standards have been established by the Annular Bearing Engineers Committee (ABEC) of the American Bearing Manufacturers Association (ABMA). These tolerance classes have been accepted by the American National Standards Institute (ANSI) and conform essentially with standards of the International Organization for Standardization (ISO).

ABEC PARAMETERS

ABEC standards, which define tolerances for several major bearing dimensions and characteristics, are divided into mounting dimensions and bearing geometry. The geometric tolerances apply to both inner and outer rings and include:

- Bore roundness
- Bore runout with side
- Bore taper
- Race runout with side
- Width variation
- Radial runout

ABEC standards do not address many other factors that affect bearing performance and life, including:

- Materials
- Ball complement–number, size and precision
- Raceway curvature, roundness and finish
- Cage design
- Lubricant

ABEC PRECISION CLASSES

General-purpose ball bearings are manufactured to tolerances in accordance with precision classes ABEC 1, ABEC 3, ABEC 5, ABEC 7 and ABEC 9. The ascending numbers indicate stricter tolerances and additional requirements as found in ANSI/ABMA Std. 20.

ELECTRIC MOTOR CLASS

The American bearing industry also recognizes an Electric Motor Class of bearings that comply with additional noise and vibration standards that may be desirable to the end user. Specifications for this bearing class include:

- Pressed steel cage
- C3 fit
- ExxonMobil Polyrex grease
- Passes the bearing manufacturer's vibration and noise standard

Besides these benefits, specifying Electric Motor Class wording in purchasing documents could also help deter counterfeit or "grey market" bearings from being inadvertently supplied.

BEARING MANUFACTURER NUMBERING SYSTEMS

The metric system of measurement has been widely adopted by all bearing manufacturers, which ensures ready interchangeability of most bearing types and sizes.

Bearings can be identified by using ABMA numbers or by using each manufacturer's discrete numbering system. In either case, it is imperative that EASA repair firms record the name as well as all of the numbers on each bearing that is to be replaced. They should also check the nomenclature designations in catalogs from the makers of the bearings because there are some variations among manufacturers.

INTERNAL CLEARANCE

The internal clearance of bearings is the space provided between the elements for a lubricant film and thermal expansion during normal operation to prevent preloading of the bearing that could cause premature failure. The internal clearance is specified as C0, C2, C3 and C4. This is a basic boundary dimension, with C2 being a tight clearance while C3 and C4 are loose clearances. The correct space between the elements can be critical to the application.

For electric motors, the vast majority of designs use a C3 internal clearance as "standard". There are some applications, such as shaker screen/vibrator motors which require a C4 internal clearance due to the heavy radial load resulting from the counterweights. Additionally, a few manufacturers use C4 bearings on the drive end in close-coupled compressor applications. In this case, the greater internal clearance of the C4 bearing accommodates the higher operating temperature.

SHAFT AND HOUSING FIT

Shaft and housing fits for metric radial ball and roller bearings conforming to basic boundary plans have been es-

Ball bearing nomenclature.

tablished by ANSI/ABMA Std. 7.* Shaft and housing fits (j5, k5 and H6) are listed in the "Bearing Fit Tolerance" charts beginning on Page 8-15.

A careful study of the ABMA Stds. 7 and 20 should be made by anyone responsible for replacing bearings in electric motors.

BEARING FITS

The inner ring, which is normally the rotating member in electric motors, should be prevented from slipping on the shaft since the hard bearing will wear the relatively soft shaft. This requires an interference fit of .0003 to .0006 inch per inch diameter. An excessive interference fit will preload the bearing, causing early failure; a slip fit will let the inner race of the bearing slide around the shaft, causing early failure.

The outer ring is normally the stationary member in electric motors. Since it must be free to slide axially to compensate for thermal expansion of the shaft, it must not be an interference fit and should never be locked into position with a locking compound. The outer ring may occasionally rotate a small amount, but this is good since it moves a new section into the overhung load area.

Bearing selection is important but must be complemented

by correct fit and proper installation to maintain the precision required for long bearing life.

L10 BEARING LIFE

A rolling bearing reaches its normal end of life when there is metal fatigue on either balls or the inner race of the bearing. Fatigue is totally dependent on the operating load, lubrication, temperature and rotational speed. The L10 life is the number in hours that 10% of a sample of identical bearings in identical conditions would fail. The sample must be large enough to provide a theoretical statistical norm.

The L₁₀ life for a bearing operating in a belted application may be as little as one or two years (8,700 - 17,520 hours) while the same bearing operating in a direct-coupled application may be as much as ten or eleven years (87,000 - 93,360 hours). The L₁₀ life of a bearing does not vary; the operating conditions vary and shorten the theoretical life.

|--|

Nominal I	bore (mm)				Shaft toler	ance class			
Over	Inclusive	k5 c	or k6	m5 c	or m6	n5 c	or n6	p5 c	or p6
18	30	235°F	113°C	-	—	—	—	—	—
30	50	195°F	90°C	210°F	109°C	_	_	_	_
50	80	160°F	71°C	185°F	85°C	210°F	109°C	—	_
80	120	140°F	60°C	160°F	71°C	175°F	80°C	195°F	90°C
120	180	130°F	55°C	140°F	60°C	150°F	65°C	170°F	75°C
180	250	120°F	49°C	130°F	55°C	140°F	60°C	150°F	65°C
250	315	115°F	46°C	120°F	49°C	130°F	55°C	140°F	60°C

* Temperature difference between shaft and bearing.

Note: Bearing temperature should never exceed 250°F (125°C). Consider freezing the shaft if the temperature differential would require heating the bearing above 250°F (125°C).

FIGURE 8-3: SHIELDED BEARING

SHIELD

Non-contact, low-friction, metal shield for protection against foreign substances

NON-CONTACT SEAL CONTACT SEAL

Non-contact, low-friction, rubber and metal seal develops a labyrinth effect for protection against foreign substances.

Contact type rubber and metal seal with friction seal and labyrinth effect for maximum protection from dust penetration.

INSTALLATION

Bearings with bores of 45 mm or smaller (e.g., 309) should be pressed onto the shaft not heated due to possibility of internal damage to the bearing. **Caution:** Installing a bearing on a shaft by pressing the outer race can damage the bearing; press only on the inner race.

The best method of installing larger bearings is to heat them to expand the inner race so it can be snapped onto the shaft and held firmly against the shaft shoulder until it locks in place. Open bearings should never be heated above 250°F (120°C), and normally they can be installed after being heated to 175°F (80°C). A pre-lubricated, shielded or sealed bearing should never be heated above 175°F (80°C). (See Table 8-1 for temperature limits for mounting bearings.) Proper installation also requires careful inspection of the shaft to ensure that the bearing is the correct size and that there are no nicks or dents in the shaft or shoulder.

If using an induction bearing heater, and if demagnetizing is required, it can be done by passing the bearing between the two poles of the induction heater.

BEARING STORAGE

Bearings should be stored flat on a cushioned surface and should be used before the expiration date (Figure 8-5). In addition, bearings should be stored in an area that is temperature and humidity controlled.

FIGURE 8-5: BEARING STORAGE

Store bearings flat on vibration absorbing material and use before expiration date.

Coloction eriterio		Shield/seal type	
Selection criteria	Shield	Non-contact seal	Contact seal
Torque	Low	Low	Higher (because of contact lip mechanism)
High-speed characteristics	Same as open bearings	Same as open bearings	Limited due to contact seal mechanism
Grease retention	Good	Better than shield	Slightly better than non-contact type
Dust prevention	Good	Better	Excellent
Waterproofing	Unsuitable	Unsuitable	Good (usable under water spray)
Heat resistivity	Depending on the heat resistance of the grease	Intermittent: 266°F (130°C) Continuous: 248°F (120°C)	Intermittent: 248°F (120°C) Continuous: 212°F (100°C)
Operating temperature	140°F (60°C)	140°F (60°C)	190°F (88°C) at start, then drops to 170°F (77°C)

TABLE 8-2: SELECTION GUIDE FOR SEALED AND SHIELDED BEARINGS

8.2 ABMA NOMENCLATURE

* The letters for Columns 2, 3, and 4 of modifications are omitted if none are applicable. If column 4 is applicable but not 3, or 2 and 3, and X or XX

** If these three columns are omitted, standard fitup, tolerances, and greases are applied.

is used on Column 3, or 2 and 3; e.g., 35 BC02J03 or 35BT03MXXD03.

ABMA stands for American Bearing Manufacturers Association, formerly known as the Anti-Friction Bearing Manufacturers Association (AFBMA).

ABMA NOMENCLATURE-ROLLER BEARINGS

ABMA stands for American Bearing Manufacturers Association, formerly known as the Anti-Friction Bearing Manufacturers Association (AFBMA).

8.3 BEARING MANUFACTURERS' NOMENCLATURE FOR BALL BEARINGS

BEARING MANUFACTURERS' NOMENCLATURE RADIAL BALL BEARINGS-TYPES AND SERIES

	R	Bearing		SINGL	E ROW I	DEEP GR	OOVE B	ALL BEA	RINGS-	CONRAD	TYPE	
673	P	Series	FAFNIR	FAG	GMN	коуо	MRC	NACHI	NSK	NTN	SKF	STEYR
		Light	200K	6200	6200	6200	200-S	6200	6200	6200	6200	6200
	\simeq	Medium	300K	6300	6300	6300	300-S	6300	6300	6300	6300	6300
	Ø	Bearing Series	Ś	SINGLE F		EP GROC		L BEARII	NGS-MA	хімим с	APACITY	Y
K S		Light	200W	_	_	_	200-M	_	BL200	BL200	200	-
	E	Medium	300W	—	_	_	300-M	_	BL300	BL300	300	_
(CAR)	Ø	Bearing Series			SINGL	E ROW A				RINGS		
	F	Light	7200	_	_	_	7200	7200	7200	7200	7200	7200
		Medium	7300	—	_	_	7300	7300	7300	7300	7300	7300
$\int dx dx$	Я	Bearing Series			DOUBI	E ROW	ANGULA		ACT BEA	RINGS		
	Y	Light	5200	_	_	_	5200	5200	5200	5200	5200	3200
		Medium	5300	-	_	_	5300	5300	5300	5300	5300	3300

	FAF	NIR	F/	AG	GI	MN	KO	YO	Μ	RC
	One side	Both sides								
Seal	Р	PP	RSR	.2RSR					Z	ZZ
Contact seal					RS	2RS	RS	2RS		
Contact seal double lip					URS	2URS	RK	2RK		
Low friction seal					RZ	2RZ	RD	2RD		
Non-contact seal					BRS	2BRS	RU	2RU		
Polyacrylic seal										
Fluorocarbon seal										
Mechanical seal	L	LL								
Felt seal	Т									
Shield	D	DD	ZR	.2RZ	Z	2Z	Z	ZZ	F	FF
Stainless steel shield										
Rubber-coated shield									FP	FFP
Removable shield										

BEARING MANUFACTURERS' NOMENCLATURE SEALS AND SHIELDS FOR BALL BEARINGS

	NA	СНІ	N	SK	N.	TN	S	KF	STE	YER
	One side	Both sides								
Seal							RSI	2RSI	RS	2RS
Contact seal	NSL	2NSL	DU	DDU						
Contact seal double lip					LU	LLU				
Low friction seal					LH	LLH				
Non-contact seal	NK	2NK	V	VV	LB	LLB				
Polyacrylic seal					LUA	LLUA				
Fluorocarbon seal					LUAI	LLUAI				
Mechanical seal										
Felt seal										
Shield	Z	ZZ	Z	ZZ	Z	ZZ	Z	2Z	Z	2Z
Stainless steel shield					ZI	ZZI				
Rubber-coated shield										
Removable shield					ZA	ZZA				

FAFNIR NUMBERING SYSTEM

Radial Bearings

Note: Inclusion of this chart is not an endorsement or recommendation of any manufacturer.

NSK NUMBERING SYSTEM

Ball bearings

Note: Inclusion of this chart is not an endorsement or recommendation of any manufacturer.

NTN NUMBERING SYSTEM

			Ball B	earings				
		Size						
	Ser	ries Diamet	Spe er Char – –	cial nfer	Mo 	Ring odification	Precision	
		↓ ↓				¥	¥	
	6	6203	3 X	1	LLB	C3	P5 /	2A
	Ť	Ť	Ť	Ť	Ť	ŧ		Ť
	Prefix	Basic Number	Internal Design	Cage	Seal or Shield	Clearanc	– e	Lubricant
1. PREFIX TS2	Heat stab	ilization for up to 320°F	(160°C)	7.	RING MODIFIC	ATION Spap ring groov	e on outer ring but	t without snan ring
TS3	Heat stab	ilization for up to 390°F	(200°C)		NR	Snap ring groov	e on outer ring, sna	ap ring included
TS4	Heat stab	ilization for up to 480°F	(250°C)		/X.XX	Special bore, XX	(.XX in mm; e.g., 5	/16" bore, /7.938
					/XX.X	Special O.D., siz	ze XX.X in mm.	
2. 3ERIE3 6	Single rov	w deep groove ball bear	rinas	8	INTERNAL CLE	ABANCE		
8, W	IC8 Single rov	w deep groove ball bear	rings	0.1	C1	Radial clearance	e less than C2	
BL	Maximum	n capacity			C2	Radial clearance	e less than normal	
DE	& DF Special de	ouble row ball bearings			C3	Radial clearance	e greater than norn	nal
B	a SA Special Si Inch serie				C4 C5	Radial clearance	e greater than C3	
					CSXX	Special radial cl	e greater than 04 earance: XX is mea	an value in 0.001 mm
3. INTERNA	L DESIGN					units	,,	
A	Internal re	edesign, from A onward						
U	Universal	seal groove for open b	earings	9.	TOLERANCE		involunt to ADEC 0	N N N N N N N N N N N N N N N N N N N
4. CHAMFE	R				P5	ISO class 5 (equ	ivalent to ABEC 5)
Xn	Special cl	hamfer, from 1 onward	(X1, X2)		P4	ISO class 4 (eq	ivalent to ABEC 7)
					PXn	Special tolerand	e, from 1 onward (PX1, PX2)
5. CAGE					Vn	Special requirer	nent, from 1 onwar	d (V1, V2)
.1	Pressed s	steel cage		10		NT (Typical)		
T1	Phenolic	cage		10	/1E	Exxon Andok C	arease	
T2	Nylon cag	ge			/1W	Anderson Oil W	insor Lube L-245X,	, MIL-L-6085A
					/2A	Shell Alvania #2	grease, MIL-G-18	709A
6. SEAL OR	SHIELD	0			/2E	Exxon Unirex N	3	
IR	IIB Non-cont	e act rubber seal			/3A /3E	Fryon Reacon S	1 #5 grease	
LU,	LLU Double-lin	o contact rubber seal			/5C	Chevron SRI #2	grease, MIL-G-35	45C
LH,	LLH Light cont	tact rubber seal			/5S	Shell Aeroshell	#7 grease, MIL-G-2	23827A
LUA	, LLUA Polyacryli	ic rubber seal			/9B	Mobil 28, MIL-G	-81322	
LUA 77	1, LLUA1 Fluorocar 7 Shiald	bon rubber seal			/L014	Shell Dolium R		
Z, Z 71	ZZ1 Stainless	steel shield						
ZA,	ZZA Removab	le shield						

Note: Inclusion of this chart is not an endorsement or recommendation of any manufacturer.

Altion DOPE OD WDTH DOPE DOPE <thdope< th=""> DOPE DOPE <thd< th=""><th></th><th></th><th></th><th></th><th>200 SERIES</th><th></th><th></th><th></th><th></th><th></th><th></th><th>300 SERIES</th><th></th><th></th><th></th><th></th></thd<></thdope<>					200 SERIES							300 SERIES				
UNIGER mm inches 01 1260.02 15 0.4724 32 1.5740 11 0.4331 1.6751 1.06031 47 1.6657 12 0.4731 03 1750.02 15 0.9306 35 0.9431 52 0.9431 52 0.9431 15 0.03031 05 3950.02 30 1.1611 82 2.4409 16 0.7401 496 17 0.6433 20 1.741 0.6433 1.741 0.6433 1.741 0.6433 1.741 0.6433 1.741 0.6433 1.741 0.6433 1.741 0.6433 1.741 0.6433 1.741 0.6433 1.741 0.7430 0.7440 1.741 0.7430 1.741 0.7431 1.741 0.741	BASIC	ABMA BEARING	ă	ORE		Q	MI	ΗC	ABMA BEARING	B	ORE		8	M	DTH	
0 105002 11 0.4393 30 11811 9 0.5431 150603 11 14.667 12 0.4734 0.1 155002 15 0.4934 37 15631 14.667 13 0.4314 0.8 175002 15 0.5904 35 1.7700 14 15631 14 15631 14 15631 15 0.5904 15 0.5904 15 0.5904 15 0.5904 15 0.5904 15 0.5904 15 0.5904 15 0.5904 15 0.5904 17 0.6933 1.1811 12 0.5118 15 0.5904 15 0.5904 17 0.6933 13 13 13 0.5118 15 0.5905 13 13 13 13 13 13 0.5118 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 <th>JMBER</th> <th>NUMBER</th> <th>mm</th> <th>inches</th> <th>mm</th> <th>inches</th> <th>mm</th> <th>inches</th> <th>NUMBER</th> <th>mm</th> <th>inches</th> <th>mm</th> <th>inches</th> <th>mm</th> <th>inches</th> <th></th>	JMBER	NUMBER	mm	inches	mm	inches	mm	inches	NUMBER	mm	inches	mm	inches	mm	inches	
01 128002 12 0.4724 32 12800 11 0.4331 128003 12 0.4754 12 0.4754 125 0.4331 125 0.4331 125 0.4331 125 0.4331 125 0.4331 125 0.4331 125 0.4331 125 0.4331 125 0.4331 125 0.4331 125 0.4331 125 0.4331 125 0.4331 125 0.4331 125 0.4331 125 0.4431 125 0.4431 125 0.4431 125 0.4431 125 0.4431 125 0.4431 125 0.4431 125 0.4431 125 0.4431 125 0.4431 125 0.4431 126 0.4431 126 0.4431 126 0.4431 126 0.4431 126 0.4431 126 0.5432 127 0.5443 127 0.5443 127 126 0.5433 127 126 0.5433 127 126 0.5433 127	00	10BC02	10	0.3937	30	1.1811	6	0.3543	10BC03	10	0.3937	35	1.3780	11	0.4331	
0 115BOC2 15 0.506 35 1.3780 11 0.4731 15BCC3 15 0.5505 13780 11 0.5512 115BCC3 15 0.5506 137 0.5516 0.5<	01	12BC02	12	0.4724	32	1.2598	10	0.3937	12BC03	12	0.4724	37	1.4567	12	0.4724	
03 117BC02 17 0.6633 40 1.5748 1.5 0.4724 1.7BC03 17 0.6633 40 1.5748 1.5 0.5312 0.63913 2.0 0.73814 52 2.0472 15 0.5306 0.6 20BC02 35 0 1.1111 72 2.8409 17 0.6303 0.7 35BC02 35 1.3700 55 2.4403 16 0.7629 30503 35 1.3111 72 2.8436 17 0.6803 0.8 1.3500 35 1.3701 85 3.3465 17 0.6893 30503 35 1.3717 17 0.8234 2.440 17 0.6803 2.41717 100 3373 20 0.8816 17 0.6803 2.41717 106 3.3433 20 0.7874 4.8503 45 1.7717 0.6893 1.7717 0.6893 1.7717 106 3.3433 23 1.6804 1.76 0.6896 1.7177	02	15BC02	15	0.5906	35	1.3780	11	0.4331	15BC03	15	0.5906	42	1.6535	13	0.5118	
0.4 2050.2 20 0.787.4 4.7 1560.4 160.4 100.7 2047.2 15 0.569.6 2560.0 25 0.047.3 52 2.4409 17 0.6689 3660.0 35.3 2.4409 17 0.6689 3660.0 35.3 2.4409 17 0.6689 3660.0 35.3 2.4409 17 0.6689 3660.0 35.3 2.4409 17 0.6689 3660.0 35.3 2.4409 17 0.6689 3660.0 35.3 2.4409 17 0.6689 3660.0 35.3 2.4409 17 0.6689 3660.0 35.3 2.4409 17 0.6689 3660.0 35.3 2.2409 17 0.6689 3660.0 35.3 2.2409 17 0.6689 3660.0 35.3 2.2 0.9485 3.2 0.9486 3.2 0.9486 3.2 0.9486 3.2 0.9486 3.2 0.9486 3.2 0.9486 3.2 0.9486 3.2 3.2 0.9486 3.2<	03	17BC02	17	0.6693	40	1.5748	12	0.4724	17BC03	17	0.6693	47	1.8504	14	0.5512	
05 258C/2 35 11811 62 2400 17 06803 07 388C/2 30 11811 62 2400 17 06803 07 388C/2 35 13780 72 24346 17 06803 07 388C/2 35 13780 72 28346 19 0.7480 08 498C/2 5 15748 80 34465 19 0.7480 80 34337 27 10826 1 556 55 21664 100 38377 27 1060 38473 28 0.9665 68603 55 21644 127 14 177 10 33377 27 1060 1 55602 55 21654 120 0.7887 28 0.9665 58603 55 2164 131 1206 1 55602 2553 120 0.8868 58603 55 21644 724 29	04	20BC02	20	0.7874	47	1.8504	14	0.5512	20BC03	20	0.7874	52	2.0472	15	0.5906	
06 30BC/C2 30 11811 72 28346 19 07400 07 35BC/C2 35 1,3780 72 2,8446 19 0,7440 07 35BC/C2 45 1,574 80 3,4466 17 0,6893 35BC/C3 45 1,5771 100 3,8377 27 10,826 0 45BC/C2 55 1,9665 90 3,8370 27 0,8263 3693 25 0,866 3,8377 27 10,826 0,8863 3696 3,8370 27 0,8263 99 3,8377 27 10,826 0,9863 1467 147 140 1377 17 106 3,8370 27 10,826 0,9863 1477 166 27 0,9863 147 141 140 15717 166 167 156 156 156 156 156 15717 176 176 176 176 176 176 176 156 156	05	25BC02	25	0.9843	52	2.0472	15	0.5906	25BC03	25	0.9843	62	2.4409	17	0.6693	
07 35BC02 35 1,3780 72 2,8346 17 0,6683 35BC03 35 1,3780 80 3,1466 17 0,8053 08 45BC02 40 1,7714 80 3,446 17 17 100 3,9370 27 10,803 11 56BC02 55 1,6685 90 3,5433 20 0,7874 56BC03 55 1166 1,7717 100 3,3370 27 10,803 11 56BC02 55 2,3631 120 3,3470 27 0,866 55,118 28 0,905 55,181 28 1,1717 15 65BC02 55 2,3437 120 4,7344 23 1,1717 100 3,370 27 10,803 15 65BC02 55 2,9433 70BC03 55 2,5591 140 5,518 33 1,205 16 80BC02 86 3,443 7100 5,518 3,445	06	30BC02	30	1.1811	62	2.4409	16	0.6299	30BC03	30	1.1811	72	2.8346	19	0.7480	
08 40BC02 40 1.5748 80 3.1496 18 0.7087 40BC03 50 1.5748 90 3.5433 22 0.90843 1 55BC02 55 1.7717 85 3.3465 19 0.7400 45BC03 55 1.7717 10 3.307 25 0.90843 1 55BC02 55 2.4654 100 3.3070 27 0.8061 60BC03 56 1.667 100 3.307 27 0.9043 55 2.4654 100 3.307 27 0.8061 60BC03 56 1.667 100 3.307 27 0.8063 55 1.1081 3.0055 100 1.474 29 1.1417 1 55602 120 4.744 23 0.9055 568003 35 3.1466 100 3.307 1.457 1 55602 85 3.465 100 5.5163 100 5.5163 3.1 1.475 1	07	35BC02	35	1.3780	72	2.8346	17	0.6693	35BC03	35	1.3780	80	3.1496	21	0.8268	<u> </u>
09 456C02 45 1,7717 85 3.3455 19 0.7480 456C03 55 1,7717 100 33370 25 0.0860 11 506C02 55 21664 100 33370 27 10650 11 506C02 55 21654 100 33370 27 10650 13 606C02 56 23622 110 4,7307 27 0.065 14 706C02 56 23622 130 5.1161 25 0.9043 756 23623 150 5.5163 33 11.01 14 706C02 86 100 5.5118 25 0.9043 756C03 75 2.9528 130 1.457 16 805002 96 5.5118 25 0.943 756C03 75 2.9528 170 6.6929 37 1.4667 17 866002 96 5.5118 25 0.9433 766 2.3553 <	08	40BC02	40	1.5748	80	3.1496	18	0.7087	40BC03	40	1.5748	06	3.5433	23	0.9055	
10 50BC02 50 1.9685 90 3.5433 20 0.7874 50BC03 55 110 4.3307 27 10630 11 55BC02 55 2.1654 100 3370 21 0	60	45BC02	45	1.7717	85	3.3465	19	0.7480	45BC03	45	1.7717	100	3.9370	25	0.9843	
11 55BC02 55 2.1654 100 33370 21 0.8268 55BC03 55 2.1654 120 4.7244 29 1.141 12 60BC02 66 2.3622 110 4.3307 22 0.8661 60BC03 60 2.3625 136 1.181 31 1.2205 14 70BC02 75 2.9528 1300 5.1181 25 0.9449 76BC03 76 2.7559 150 5.5055 35 1.3780 15 75BC02 75 2.9528 1300 5.1181 25 0.9449 76BC03 76 2.9553 35 1.3780 16 80BC02 96 3.1496 140 5.5118 25 0.9449 76BC03 76 5.9053 37 14567 17 90BC02 96 3.1496 140 5.5118 26 1.0717 96820 37 14567 17 90BC02 965 3.7402 <td< td=""><td>10</td><td>50BC02</td><td>50</td><td>1.9685</td><td>06</td><td>3.5433</td><td>20</td><td>0.7874</td><td>50BC03</td><td>50</td><td>1.9685</td><td>110</td><td>4.3307</td><td>27</td><td>1.0630</td><td></td></td<>	10	50BC02	50	1.9685	06	3.5433	20	0.7874	50BC03	50	1.9685	110	4.3307	27	1.0630	
12 60BC02 60 2.3622 110 4.3307 22 0.8661 60BC03 60 2.3622 130 5.1181 31 1.2202 13 65BC02 75 2.5591 120 4.7244 23 0.9045 65BC03 75 2.5591 140 5.5118 33 1.2902 15 75BC02 75 2.9528 130 5.1181 25 0.9443 75BC03 75 2.9528 160 6.5992 33 1.4567 16 80BC02 80 3.1496 140 5.5118 25 0.9443 75BC03 75 2.9528 160 6.5992 33 1.4567 17 86BC02 95 3.4402 1701 6.6929 33 1.4567 1.717 20 100BC02 100 5.3465 3.4102 1.0144 1.6623 3 1.4567 10 6.6929 33 1.1814 96BC03 96 3.4362 1.5695	11	55BC02	55	2.1654	100	3.9370	21	0.8268	55BC03	55	2.1654	120	4.7244	29	1.1417	
13 65BC02 65 2.5531 120 4.7244 23 0.9449 70BC03 65 2.5531 140 5.5118 33 1.2982 14 70BC02 75 2.9528 130 5.118 23 1.365 35 1.3760 15 755C02 86 3.1465 150 5.9055 26 1.0234 85BC03 85 3.3465 150 5.9055 35 1.3554 16 6.5992 37 1.4567 33 1.6142 1.0244 85BC03 85 3.3465 180 7.0866 41 1.6142 10 905022 95 3.5433 160 6.2992 37 1.4567 1.6142 10 905022 95 3.7402 170 6.6929 37 1.6142 10 905022 95 3.7402 170 6.6929 37 1.6167 10 3.3370 180 7.4803 34 1.6142 1.	12	60BC02	60	2.3622	110	4.3307	22	0.8661	60BC03	60	2.3622	130	5.1181	31	1.2205	
	13	65BC02	65	2.5591	120	4.7244	23	0.9055	65BC03	65	2.5591	140	5.5118	33	1.2992	
15 75BC02 75 2.9528 130 5.1181 25 0.9843 75BC03 75 2.9528 160 6.2992 37 1.4567 16 80BC02 80 3.1496 140 5.5118 26 1.0236 80BC03 85 3.1496 140 5.5118 26 1.0236 80BC03 80 3.1496 170 6.6929 39 1.5171 18 90BC02 95 3.7402 170 6.6929 39 1.5173 1.6029 39 1.54740 45 1.7717 20 100 3.9370 180 7.0866 34 1.3339 1.900 7.8740 47 1.8692 21 100BC02 100 3.9370 100 7.386 100BC03 100 7.3337 240 47 1.8692 21 100BC02 110 4.3337 1.06BC03 100 7.3803 25 1.4663 21 105BC02 110 4.1339 <td>14</td> <td>70BC02</td> <td>70</td> <td>2.7559</td> <td>125</td> <td>4.9213</td> <td>24</td> <td>0.9449</td> <td>70BC03</td> <td>70</td> <td>2.7559</td> <td>150</td> <td>5.9055</td> <td>35</td> <td>1.3780</td> <td></td>	14	70BC02	70	2.7559	125	4.9213	24	0.9449	70BC03	70	2.7559	150	5.9055	35	1.3780	
10 80BC02 80 3.1496 140 5.5118 26 1.0236 80BC03 80 3.1496 140 5.5118 26 1.0236 80BC03 80 3.1496 170 6.6829 39 1.5354 17 85BC02 85 3.3465 150 5.9055 28 1.1024 85BC03 85 3.3465 41 1.6142 18 90BC02 95 3.7402 170 6.6829 39 1.6142 19 95BC02 95 3.7402 170 6.6829 39 1.6142 19 95BC02 95 3.7402 170 6.6829 39 1.6142 20 105BC02 190 7.8740 8 1.4173 100BC03 100 7.8740 47 1.8504 21 105BC02 110 4.3307 200 7.8740 38 1.4061 1.00503 100 7.8863 47 1.8504 21 105BC02	15	75BC02	75	2.9528	130	5.1181	25	0.9843	75BC03	75	2.9528	160	6.2992	37	1.4567	
	16	80BC02	80	3.1496	140	5.5118	26	1.0236	80BC03	80	3.1496	170	6.6929	39	1.5354	
18 90BC02 90 3.5.433 160 6.2992 30 1.1811 90BC03 90 3.5.433 190 7.4803 43 1.6929 19 95BC02 95 3.7402 170 6.6829 32 1.2598 95BC03 95 3.7402 7.8740 45 1.7717 20 100BC02 100 3.9370 180 7.8740 35 1.5054 21 105BC02 105 3.9370 215 8.4646 47 1.8504 21 105BC02 105 3.9370 105 1.33370 215 8.4646 47 1.8504 22 110BC02 110 4.3307 200 7.8748 100503 110 4.3307 240 9.4488 50 1.9685 24 120BC02 140 1.5748 120BC03 120 4.7244 280 11.0236 55 2.1654 28 140BC02 140 1.5748 130BC03	17	85BC02	85	3.3465	150	5.9055	28	1.1024	85BC03	85	3.3465	180	7.0866	41	1.6142	
19 95BC02 95 3.7402 170 6.6929 32 1.2598 95BC03 95 3.7402 7.8740 45 1.7717 20 100BC02 100 3.9370 180 7.8740 35 1.0105 21 105BC02 100 3.9370 180 7.4803 36 1.4173 105BC03 100 3.9370 215 8.4646 47 1.8504 21 105BC02 100 7.4803 36 1.4173 105BC03 100 3.9370 216 47 1.8504 22 110BC02 110 4.3337 200 7.8740 36 1.9291 24 120BC02 110 4.3337 200 7.8744 260 10.2362 55 2.1654 28 140BC02 140 1.5748 130BC03 140 5.1181 230 11.8110 6.7335 55 2.1654 29 150BC02 150 5.5118 2305 5	18	90BC02	06	3.5433	160	6.2992	30	1.1811	90BC03	06	3.5433	190	7.4803	43	1.6929	
20 100BC02 100 3:3370 180 7.0866 34 1.3386 100BC03 100 2:95 8.4646 47 1.8504 21 105BC02 105 4.1339 190 7.4803 36 1.4173 105BC03 105 4.1339 225 8.8583 49 1.9291 22 100BC02 110 4.3307 200 7.8740 38 1.4961 110BC03 110 4.3307 240 9.4488 50 1.9685 24 120BC02 120 4.7244 215 8.4646 40 1.5748 120BC03 120 4.7244 260 10.2362 55 2.1654 26 130BC02 130 5.118 230 9.0551 40 1.5748 130BC03 140 5.1181 230 11.02362 55 2.4059 26 130BC02 140 5.5118 230 9.48646 47 1.5748 50 11.02362 55 2.405	19	95BC02	95	3.7402	170	6.6929	32	1.2598	95BC03	95	3.7402	200	7.8740	45	1.7717	
21105BC021054.13391907.4803361.4173105BC031054.13392258.8583491.929122110BC021104.33072007.8740381.4961110BC031104.33072409.4488501.968524120BC021204.72442158.4646401.5748120BC031204.724426010.2362552.165426130BC021305.11812309.0551401.5748130BC031305.118128011.0236582.283528140BC021405.51182509.8425421.5778130BC031405.511830011.8110622.440930150BC021505.905527010.6299451.7717150BC031505.905532011.8110622.559131170BC021606.299229011.4173481.8898160BC031606.299234013.3858682.677234170BC021706.692931012.2047522.0472180BC031606.299234013.3858682.677234170BC021807.086632012.2584522.0472180BC031606.299234014.1732722.834636180BC021807.086632012.5684522.0472180	20	100BC02	100	3.9370	180	7.0866	34	1.3386	100BC03	100	3.9370	215	8.4646	47	1.8504	
22 110BC02 110 4.3307 200 7.8740 38 1.4961 110BC03 110 4.3307 240 9.4488 50 1.9685 24 120BC02 120 4.7244 215 8.4646 40 1.5748 120BC03 120 4.7244 260 10.2362 55 2.1654 26 130BC02 130 5.1181 230 9.0551 40 1.5748 130BC03 130 5.1181 280 11.0236 58 2.2835 28 140BC02 140 5.5118 250 9.8425 42 1.5717 150BC03 140 5.5118 300 11.8110 62 2.400 30 150BC02 150 5.9055 270 10.6299 45 1.7717 150BC03 160 6.2992 340 13.816 65 2.400 31 170BC02 160 6.2992 310 11.4173 48 160 6.2992 340 14.1732	21	105BC02	105	4.1339	190	7.4803	36	1.4173	105BC03	105	4.1339	225	8.8583	49	1.9291	
24120BC021204,72442158.4646401.5748120BC031204.724426010.2362552.165426130BC021305.11812309.0551401.5748130BC031305.118128011.0236582.283528140BC021405.51182509.8425421.5771150BC031405.511830011.8110622.440930150BC021505.905527010.6299451.7717150BC031505.905532011.8110622.541031150BC021606.299229011.4173481.8898160BC031606.299234013.3858682.677234170BC021706.692931012.2047522.0472170BC031606.692936014.1732722.834636180BC021807.086632012.5984522.0472180BC031606.692936014.1732722.834636180BC021807.480331012.5984522.0472180BC031907.480370014.1732722.834638190BC021807.48033107.48031907.480370015.7480762.952838190BC021907.480330014.1732532.1654190BC031907.4803 <td< td=""><td>22</td><td>110BC02</td><td>110</td><td>4.3307</td><td>200</td><td>7.8740</td><td>38</td><td>1.4961</td><td>110BC03</td><td>110</td><td>4.3307</td><td>240</td><td>9.4488</td><td>50</td><td>1.9685</td><td></td></td<>	22	110BC02	110	4.3307	200	7.8740	38	1.4961	110BC03	110	4.3307	240	9.4488	50	1.9685	
26130BC021305.11812309.0551401.5748130BC031305.118128011.0236582.283528140BC021405.51182509.8425421.6535140BC031405.511830011.8110622.440930150BC021505.905527010.6299451.7717150BC031505.905532011.8110622.440932160BC021606.299229011.4173481.8898160BC031606.299234013.3858682.677234170BC021706.692931012.2047522.0472170BC031706.692936014.1732722.834636180BC021807.086632012.5984522.0472180BC031807.086638014.1732722.834638190BC021807.480334013.3858552.0472190BC031907.4803700752.952838190BC021907.480336014.173258552.065032007.48037015.7480762.952838190BC021807.480338014.173258582.565430014.16566762.952838190BC021907.48033007.48031907.480370015.7480762.9558	24	120BC02	120	4.7244	215	8.4646	40	1.5748	120BC03	120	4.7244	260	10.2362	55	2.1654	
28 140BC02 140 5.5118 250 9.8425 42 1.6535 140BC03 160 1.8110 62 2.4409 30 150BC02 150 5.9055 270 10.6299 45 1.7717 150BC03 150 5.9055 320 11.8110 62 2.4409 32 150BC02 160 6.2992 290 11.4173 48 1.8898 160BC03 160 6.2992 340 13.3858 68 2.6772 34 170BC02 170 6.6929 310 12.2047 52 2.0472 170BC03 160 6.2992 340 14.1732 72 2.8346 34 170BC02 180 7.0866 320 12.2984 52 2.0472 180BC03 180 7.0866 75 2.9528 38 190BC02 180 7.4803 180 7.0866 380 14.1732 72 2.9528 38 190BC02 190 7.4803	26	130BC02	130	5.1181	230	9.0551	40	1.5748	130BC03	130	5.1181	280	11.0236	58	2.2835	
30 150BC02 150 5.9055 270 10.6299 45 1.7717 150BC03 150 5.9055 320 12.5984 65 2.5591 32 160BC02 160 6.2992 290 11.4173 48 1.8898 160BC03 160 6.2992 340 13.3858 68 2.6772 34 170BC02 170 6.6929 310 12.2047 52 2.0472 170BC03 170 6.6929 360 14.1732 72 2.8346 36 180BC02 180 7.0866 320 12.5984 55 2.0472 180BC03 180 7.0866 380 14.1732 72 2.9528 38 190BC02 190 7.4803 190 7.4803 400 15.7480 75 2.9558 38 190BC02 200 7.4803 190 7.4803 400 15.7480 76 2.9558 38 190BC02 200 7.4803 200	28	140BC02	140	5.5118	250	9.8425	42	1.6535	140BC03	140	5.5118	300	11.8110	62	2.4409	
32 160BC02 160 6.2992 290 11.4173 48 1.8898 160BC03 160 6.2992 340 13.3858 68 2.6772 34 170BC02 170 6.6929 310 12.2047 52 2.0472 170BC03 170 6.6929 360 14.1732 72 2.8346 36 180BC02 180 7.0866 320 12.5984 52 2.0472 180BC03 180 7.0866 380 14.1732 72 2.8346 36 180BC02 190 7.4803 340 13.3858 55 2.1654 190BC03 190 7.4803 70 72 2.9528 38 190BC02 190 7.4803 190 7.4803 400 15.7480 75 2.9528 40 2.8740 360 14.1732 58 2.1654 190BC03 190 7.4803 400 15.7480 75 2.9528 20 2.00BC02 200	30	150BC02	150	5.9055	270	10.6299	45	1.7717	150BC03	150	5.9055	320	12.5984	65	2.5591	
34 170BC02 170 6.6929 310 12.2047 52 2.0472 170BC03 170 6.6929 360 14.1732 72 2.8346 36 180BC02 180 7.0866 320 12.5984 52 2.0472 180BC03 180 7.0866 75 2.9528 38 190BC02 190 7.4803 340 13.3858 55 2.1654 190BC03 190 7.4803 400 15.7480 78 3.0709 38 190BC02 200 7.8740 360 14.1732 58 2.1654 190BC03 190 7.4803 400 15.7480 78 3.0709 40 2.00BC02 200 7.8740 420 16.5354 80 3.1496	32	160BC02	160	6.2992	290	11.4173	48	1.8898	160BC03	160	6.2992	340	13.3858	68	2.6772	
36 180BC02 180 7.0866 320 12.5984 52 2.0472 180BC03 180 7.0866 380 14.9606 75 2.9528 38 190BC02 190 7.4803 340 13.3858 55 2.1654 190BC03 190 7.4803 400 15.7480 78 3.0709 40 2.00BC02 200 7.8740 360 14.1732 58 2.2835 200BC03 200 7.8740 420 16.5354 80 3.1496	34	170BC02	170	6.6929	310	12.2047	52	2.0472	170BC03	170	6.6929	360	14.1732	72	2.8346	
38 190BC02 190 7.4803 340 13.3858 55 2.1654 190BC03 190 7.4803 400 15.7480 78 3.0709 40 200BC02 200 7.8740 360 14.1732 58 2.2835 200BC03 200 7.8740 420 16.5354 80 3.1496	36	180BC02	180	7.0866	320	12.5984	52	2.0472	180BC03	180	7.0866	380	14.9606	75	2.9528	
40 200BC02 200 7.8740 360 14.1732 58 2.2835 200BC03 200 7.8740 420 16.5354 80 3.1496	38	190BC02	190	7.4803	340	13.3858	55	2.1654	190BC03	190	7.4803	400	15.7480	78	3.0709	
	40	200BC02	200	7.8740	360	14.1732	58	2.2835	200BC03	200	7.8740	420	16.5354	80	3.1496	_

NOMINAL DIMENSIONS FOR RADIAL BALL BEARINGS

BEARING DIMENSIONS

8.4

Section 8

BEARINGS
ROLLER
YLINDRICAL
FORC
DIMENSIONS
NOMINAL

ABM Fore O ABM Servet				200 Series							300 Series			
Beaing m inches m in	ABMA		ore		9	M	idth	ABMA	ğ	ore		Q	Ň	dth
Wumber mm inches m inches m i	Bearing							Bearing						
PHUC2 10 0.3337 30 11/11 9 0.3433 16PU03 11 0.4331 15PU03 12 0.3337 13780 11 0.4331 FHUC2 15 0.3606 35 1.2730 11 0.4331 15FU03 12 0.4333 13 15606 35 1.2548 12 0.4734 17FU03 17 0.6691 47 15606 35 1.3601 15 0.4734 17FU3 10 15606 47 1750 10 0.4331 0.5116 0.5506 557103 25 0.3643 27 1.4567 11 0.6516 0.5506 557103 25 0.3643 27 1.5664 17 10 0.3370 21 0.5616 0.5666 0.5606 557103 55 1.5694 17 0.5618 10 0.7460 17 0.5618 10 10.746 10 17 0.5618 10 11 11 11 11 11 11 <th< th=""><th>Number</th><th>mm</th><th>inches</th><th>mm</th><th>inches</th><th>mm</th><th>inches</th><th>Number</th><th>mm</th><th>inches</th><th>mm</th><th>inches</th><th>mm</th><th>inches</th></th<>	Number	mm	inches	mm	inches	mm	inches	Number	mm	inches	mm	inches	mm	inches
FNUC 15 04724 32 1,2500 11 1,457 12 0,4724 FNUC 15 0,473 1,5100 11 0,4331 1,5103 11 0,4331 1,5103 11 0,515 0,5106 35 1,5746 11 0,4331 1,7103 17 0,6663 47 1,8504 14 0,5515 FNUC 25 0,7841 1,57103 15 0,5512 2,64103 15 0,5516 2,6403 17 0,6633 47 1,8504 14 0,5516 55 1,3710 52 2,4409 16 0,5503 3,6403 3,67103 35 1,3748 93 3,4436 19 0,5436 57UC 40 1,5748 93 3,443 57103 3,563 13 0,3437 27 1,447 57UC 2,5531 100 3,3370 21 0,683 3,414 1,5748 1,230 57UC 2,55531 100	0RU02	10	0.3937	30	1.1811	6	0.3543	10RU03	10	0.3937	35	1.3780	÷	0.4331
THUOZ 15 0.5696 35 1,3780 11 0,4724 1,51U03 15 0.5606 42 1,5553 1,3764 14 0.5512 THUOZ 17 0.6683 40 1,5748 12 0.6513 2,0733 27 1,8564 14 0.5512 0.6683 351U03 25 0.9474 52 2,4409 17 0.6683 351U03 35 1,3770 86 21,4406 17 0.6683 351U3 35 1,3771 10 0.3573 22 0.4763 17 0.6683 351U3 35 1,3771 10 33573 22 0.4763 17 0.6683 371U3 35 1,3771 10 33573 23 0.9055 5111 17717 10 0.33573 23 0.9055 5111 12.717 10 12.806 11 12.802 11 12.802 131 13261 13261 13261 13261 13261 13261 13261 13261	2RU02	12	0.4724	32	1.2598	10	0.3937	12RU03	12	0.4724	37	1.4567	12	0.4724
FJU02 17 0.6693 40 1.5748 12 0.4724 17FU03 17 0.6693 47 18504 14 0.5512 20RV2 52 2.0472 15 0.6903 57 0.9846 17 0.6903 57 0.9846 17 0.6803 57 0.9843 62 2.4409 17 0.6803 57 0.9843 67 17 0.6803 57 0.9843 67 0.9843 67 0.9843 67 0.6803 56 0.9843 67 0.0863 0.0863 67 <t< td=""><td>5RU02</td><td>15</td><td>0.5906</td><td>35</td><td>1.3780</td><td>11</td><td>0.4331</td><td>15RU03</td><td>15</td><td>0.5906</td><td>42</td><td>1.6535</td><td>13</td><td>0.5118</td></t<>	5RU02	15	0.5906	35	1.3780	11	0.4331	15RU03	15	0.5906	42	1.6535	13	0.5118
BIU02 20 0.7874 4.7 18504 14 0.5512 20HU03 20 0.7843 52 2.0472 15 0.5306 BIU02 35 1.1811 62 2.0472 15 0.6590 25FU03 35 1.1811 72 2.8440 17 0.6683 BFU02 35 1.1771 85 3.3465 19 0.7480 45FU03 35 1.1811 72 2.8440 17 0.6683 BFU02 45 1.7717 85 3.3465 19 0.7480 45FU03 35 1.7717 100 3.3970 25 0.9643 SFU02 555 2.6591 120 0.7480 45FU03 55 2.1654 10 3.3970 27 1.0630 SFU02 55591 120 0.7480 45FU03 55 2.1654 120 0.7480 27 1.0630 SFU02 2.5591 120 0.7480 57 2.3541 20	7RU02	17	0.6693	40	1.5748	12	0.4724	17RU03	17	0.6693	47	1.8504	14	0.5512
SFU02 25 0.0843 52 2.0472 15 0.5006 25HU03 35 1.1811 72 2.2409 17 0.6683 SHU02 35 1.3780 72 2.8446 17 0.6683 361 1.3780 80 3.1496 17 0.6683 361 1.3771 80 3.1496 17 0.6683 361 1.3771 22 2.8446 1.7717 1.0 3.3437 27 1.0820 3.6433 29 0.3446 27.10 2.443 27 1.0830 26 1.9685 100 3.3670 21 0.7480 367 27 1.0633 SHU02 55 1.9665 90 3.5433 20 0.7480 55 2.1654 120 2337 27 10.633 SHU02 55 2.1654 120 3.8703 25 0.9055 55.165 1207 27 10.6337 27 10.6337 27 10.6337 27 10.6337 27	0RU02	20	0.7874	47	1.8504	14	0.5512	20RU03	20	0.7874	52	2.0472	15	0.5906
GHU02 30 11/B11 62 2.4409 16 0.6299 30HU03 35 1.3780 72 2.8336 19 0.7480 5RU02 45 1.7717 85 3.3465 19 0.7480 357.33 23 0.9055 5RU02 45 1.7717 85 3.3465 19 0.7480 357.03 35 1.7717 100 3.3370 25 0.9853 5RU02 56 2.3652 110 3.3705 22 0.8661 66RU03 56 2.3551 120 1.7717 100 3.9370 27 10630 5RU02 56 2.3653 110 4.3307 22 0.8661 66RU03 56 2.7551 120 4.7244 23 1.1467 6RU02 36 56RU03 56 2.3465 150 5.518 31 1.2244 29 1.1475 6RU02 36 5110 4.7244 23 1.4661 1.7717 <	5RU02	25	0.9843	52	2.0472	15	0.5906	25RU03	25	0.9843	62	2.4409	17	0.6693
SHUC2 35 13760 72 28346 17 0.6633 35HU03 35 13760 80 31496 21 0.0365 SHUC2 45 1.7717 86 3.4456 19 0.7087 46FU03 45 1.7771 100 3.5433 23 0.9055 SHU02 55 1.9665 3.4456 100 3.3371 21 0.0465 55 0.9665 55HU03 55 1.9665 110 4.3307 27 1.0630 SHU02 55 2.3653 120 3.5433 20 0.8655 55HU03 55 2.5551 110 4.3307 27 1.0633 SHU02 55 2.3653 120 3.5463 56HU03 55 2.5553 140 5.518 1.201 SHU02 55 2.3652 120 3.7402 2.7633 1.307 2.77 1.0633 SHU02 55 2.5581 140 <th5.518< th=""> 2.5618 1.701</th5.518<>	0RU02	30	1.1811	62	2.4409	16	0.6299	30RU03	30	1.1811	72	2.8346	19	0.7480
0FUUZ 40 15748 80 3.1496 18 0.7087 40FUUS 55 1.7717 100 3.3673 23 0.03643 FRUUZ 55 1.7717 85 3.3465 19 0.7480 55FUUS 55 2.1654 100 3.3977 27 1.06303 FRUUZ 55 2.1654 100 3.3770 27 0.8611 60 2.3543 130 5.1181 31 1.2205 FRUUZ 55 2.1654 100 3.3770 221 0.8866 56FUUS 55 2.1654 120 4.7244 29 1.1417 FRUUZ 75 2.3659 150 5.9055 36 1.3707 31 1.2205 FRUUZ 75 2.3659 150 5.9055 37 1.4667 FRUUZ 75 2.3453 160 5.9043 37 1.7017 31 1.2035 FRUUZ 33 3.1465 170 6.69293	35RU02	35	1.3780	72	2.8346	17	0.6693	35RU03	35	1.3780	80	3.1496	21	0.8268
15 1.7717 85 3.3465 19 0.7480 45FU03 55 1.7717 100 3.3370 22 0.0843 5RU02 55 1.684 100 3.3465 19 0.7480 45FU03 55 1.7717 100 3.3370 27 1.0630 55 2.1654 100 3.3737 27 0.1083 55 1.1417 100 3.3370 27 1.0630 55RU02 55 2.3659 120 4.7244 23 0.9043 75RU03 65 2.3651 130 1.146 5.1181 31 1.2092 57RU02 55 2.3558 130 5.1181 25 0.9043 75RU03 65 2.3651 130 5.1181 31 1.2032 57RU02 85 3.4466 170 6.5905 33 1.4367 1.717 60RU02 55 2.3465 100 3.3742 100 3.3742 100 3.3742	40RU02	40	1.5748	80	3.1496	18	0.7087	40RU03	40	1.5748	06	3.5433	23	0.9055
FHU02 50 1.9685 90 3.5433 20 0.7874 56FU03 55 1.1965 110 4.3307 27 1.10630 55FU02 55 2.1654 100 33377 22 0.8868 55FU03 55 2.1654 120 4.7244 29 1.1417 55FU02 65 2.35591 120 4.7244 23 0.9055 65FU03 65 2.5591 140 5.118 31 12205 700 2.7559 120 4.7244 23 0.9043 76HU03 70 2.7559 150 5.9055 35 1.3780 775HU02 75 2.3465 150 5.9055 28 1.1024 85FU03 85 2.5591 170 6.6829 37 1.2563 90FU02 85 3.3465 150 5.9055 28 1.7167 7.086 41 1.6162 95 3.3465 150 5.9055 33 1.10236 8563 </td <td>45RU02</td> <td>45</td> <td>1.7717</td> <td>85</td> <td>3.3465</td> <td>19</td> <td>0.7480</td> <td>45RU03</td> <td>45</td> <td>1.7717</td> <td>100</td> <td>3.9370</td> <td>25</td> <td>0.9843</td>	45RU02	45	1.7717	85	3.3465	19	0.7480	45RU03	45	1.7717	100	3.9370	25	0.9843
55R U02 55 2:1654 100 3:3370 21 0.8268 55R U03 55 2:1654 120 4:7244 29 1:1417 65R U02 65 2:5591 110 4:3377 22 0.8861 60R U03 60 2:5591 120 5:1181 31 1:2205 65R U02 76 2:5591 120 4:9213 24 0.9445 75R U03 75 2:9528 160 6:2992 37 1:4567 75R U02 75 2:9528 130 5:1181 25 0.9445 75R U03 75 2:9528 160 6:2992 37 1:4567 75R U02 85 3:1466 170 5:965 30 1:1811 25 0.9449 76103 35 3:345 160 6:2992 37 1:16929 85R U03 86 3:7402 170 6:6929 36 1:1614 36 1:60 5:9055 35 1:717 90R U02	0RU02	50	1.9685	06	3.5433	20	0.7874	50RU03	50	1.9685	110	4.3307	27	1.0630
60 Los 2.3622 110 4.3307 22 0.3661 60 RU03 60 2.3523 130 5.118 33 1.2203 65RU02 75 2.5591 120 4.7244 23 0.9055 65RU03 65 5.5511 35 1.3700 75RU02 75 2.5551 125 4.9213 24 0.9443 75RU03 75 2.5591 140 5.5118 33 1.4567 75RU02 85 3.1496 140 5.5118 25 0.9443 7.0864 41 1.6162 90102 35435 150 5.9055 28 1.1024 85RU03 85 3.3465 180 7.0866 41 1.6124 90102 35433 160 6.2992 32 1.5014 31 1.6029 35 1.562 90102 35433 160 6.2992 34 1.717 1.6929 90102 105 4.133 1050103 105 4.1	55RU02	55	2.1654	100	3.9370	21	0.8268	55RU03	55	2.1654	120	4.7244	29	1.1417
65RU02 65 2.5591 120 4.7244 23 0.9055 65RU03 65 2.5591 140 5.5118 33 1.2992 70RU02 75 2.7559 126 4.9213 24 0.9449 70RU03 85 2.7559 150 5.9055 35 1.3780 77RU02 85 3.1496 140 5.5118 26 0.9449 77003 85 3.1496 170 6.6929 37 1.4567 86RU02 85 3.3465 150 5.9055 26 1.0203 85 3.3465 180 7.0866 41 1.6142 86RU02 85 3.3465 150 5.9055 36 1.1012 1.60 1.5923 37 1.4561 85RU02 85 3.3465 150 5.9055 36 1.60 5.9055 37 1.4561 96RU03 86 1.010103 100 7.3465 160 7.3465 47 1.6142 <t< td=""><td>60RU02</td><td>60</td><td>2.3622</td><td>110</td><td>4.3307</td><td>22</td><td>0.8661</td><td>60RU03</td><td>60</td><td>2.3622</td><td>130</td><td>5.1181</td><td>31</td><td>1.2205</td></t<>	60RU02	60	2.3622	110	4.3307	22	0.8661	60RU03	60	2.3622	130	5.1181	31	1.2205
70 2.7550 125 4.9213 24 0.9449 70RU03 70 2.7559 150 5.9055 35 1.3780 75HU02 75 2.9528 130 5.1181 25 0.9843 75RU03 75 2.9528 160 6.2992 37 1.4567 80 3.3465 150 5.5118 26 1.0236 85RU03 85 3.3455 160 6.2992 37 1.4567 80RU02 95 3.5433 160 6.2992 30 1.1811 90RU03 90 3.5433 190 7.4803 43 16929 95 3.7402 170 6.6929 32 1.3386 100RU03 100 7.8740 45 1.7717 100RU02 100 3.9370 180 7.8662 33 49 1.9692 95RU03 35 3.7402 200 7.8664 47 1.8504 100RU02 100 4.3367 100RU03 100 </td <td>65RU02</td> <td>65</td> <td>2.5591</td> <td>120</td> <td>4.7244</td> <td>23</td> <td>0.9055</td> <td>65RU03</td> <td>65</td> <td>2.5591</td> <td>140</td> <td>5.5118</td> <td>33</td> <td>1.2992</td>	65RU02	65	2.5591	120	4.7244	23	0.9055	65RU03	65	2.5591	140	5.5118	33	1.2992
75HU02 75 2.9528 130 5.1181 25 0.9843 75RU03 75 2.9528 160 6.2992 37 1.4567 86RU02 80 3.1496 140 5.5118 26 1.0236 80RU03 85 3.1496 170 6.6929 39 15.354 96RU02 96 3.3433 160 6.5992 30 1.1811 90RU03 95 3.7402 7.0866 41 1.6123 96RU02 95 3.7402 170 6.8929 32 1.5598 95RU03 95 3.7402 216 47 1.6123 96RU02 95 3.7402 170 6.8929 32 1.5598 95RU03 95 3.7402 200 7.8740 47 1.6504 106RU02 100 3.9370 180 7.3035 100 7.3035 1.655 1.7717 106RU03 105 1.10703 100 3.3370 215 8.4646 47	70RU02	70	2.7559	125	4.9213	24	0.9449	70RU03	20	2.7559	150	5.9055	35	1.3780
B0RU02 80 3:1496 140 5.5118 26 1.0236 B0RU03 80 3:1496 170 6.6929 39 1.534 B5RU02 85 3:3465 150 5.9055 28 1.1024 85RU03 85 3:3456 180 7.0866 41 1.6142 906RU02 95 3:7402 170 6.6929 30 1.1811 90RU03 95 3:7402 7086 41 1.6142 96RU02 95 3:7402 170 6.6929 32 1.2558 95RU03 95 3:7402 200 7.8740 45 1.7717 105RU02 105 4.1339 1067U03 100 3:3370 215 8.4646 40 1.5748 130RU03 100 7.4803 49 19291 105RU02 110 4.3307 200 7.8740 38 1.4061 1.07003 100 7.4803 49 19291 105RU02 110 4.3307	75RU02	75	2.9528	130	5.1181	25	0.9843	75RU03	75	2.9528	160	6.2992	37	1.4567
B5FU02 85 3.3465 150 5.9055 28 1.1024 B5FU03 85 3.3465 180 7.0866 41 1.6142 90 3.5433 160 6.2992 30 1.1811 90RU03 90 3.5433 190 7.4803 43 1.6929 95FU02 95 3.7402 170 6.6929 32 1.2598 95FU03 95 3.7402 200 7.4803 43 1.6929 95FU02 100 3.9370 180 7.4803 34 1.5171 1.8504 47 1.8504 105FU02 100 3.9370 180 7.4803 34 47 1.8504 107HU02 110 4.73307 200 7.8740 38 1.07103 100 2.39370 1.8504 47 1.8504 107HU02 110 4.73307 200 7.8744 260 10.2362 55 2.1654 107HU02 120 5.1181 230	80RU02	80	3.1496	140	5.5118	26	1.0236	80RU03	80	3.1496	170	6.6929	39	1.5354
90 3.5433 160 6.2992 30 1.1811 90RU03 90 3.5433 160 6.2992 30 1.1811 90RU03 95 3.7402 7.4803 43 1.6929 95FU02 95 3.7402 170 6.6929 32 1.2598 95FU03 95 3.7402 270 7.8740 45 1.7717 100FU02 100 3.9370 2.15 8.4646 40 1.3366 1.4173 105FU03 105 3.3740 215 8.4646 47 1.8504 100FU02 110 4.3307 200 7.8740 38 1.4173 105FU03 105 3.9377 240 9.4496 47 1.8504 100FU02 110 4.3307 2.16 4.1339 105FU03 105 4.1339 10.2362 55 2.1654 100FU02 110 4.3307 2.16 4.1339 120 4.7244 260 10.2362 55 2.1654 10	85RU02	85	3.3465	150	5.9055	28	1.1024	85RU03	85	3.3465	180	7.0866	41	1.6142
953.740217706.6929321.259895RU03953.74022007.8740451.771100RU021003.93701807.0866341.3386100RU031003.93702158.4646471.8504105RU021054.13391907.4803361.4173105RU031003.93702158.4646471.8504107RU021104.33072007.8740381.4173105RU031004.133972409.4488501.9291107RU021104.33072007.8740381.4961110RU031104.33072409.4488501.9683107RU021204.72442158.4646401.5748120RU031204.724426010.2362552.1654130RU021305.11812309.0551401.5748130RU031405.118128011.81106.2140RU021405.51182509.8425421.5748100RU031405.118128011.81106.22.1654150RU021505.505527010.6299451.7717150RU031605.511830011.81106.22.4409160RU021606.299231011.4173481.657031607.2688.6862.4402.6571160RU021606.292931011.2173 <td< td=""><td>90RU02</td><td>90</td><td>3.5433</td><td>160</td><td>6.2992</td><td>30</td><td>1.1811</td><td>90RU03</td><td>06</td><td>3.5433</td><td>190</td><td>7.4803</td><td>43</td><td>1.6929</td></td<>	90RU02	90	3.5433	160	6.2992	30	1.1811	90RU03	06	3.5433	190	7.4803	43	1.6929
100 U02 100 3.9370 180 7.0866 34 1.3386 100 U03 100 2.95 8.4646 47 1.8504 105 FU02 105 4.1339 190 7.4803 36 1.4173 105FU03 105 4.1339 225 8.8583 49 1.9291 110 FU02 110 4.3307 200 7.4803 36 1.4173 105FU03 105 4.1339 225 8.8583 49 1.9291 110 FU02 110 4.3307 210 1.5748 107U03 110 4.3307 240 9.448 50 1.9683 130 FU02 120 4.7244 216 40 1.5748 130 FU03 120 4.7244 260 10.2362 55 2.1654 130 FU02 140 1.5748 105 FU03 120 4.7244 260 10.2362 55 2.1654 140 FU02 140 1.5748 105 FU03 120 5.1181 200 11.02036 <td>95RU02</td> <td>95</td> <td>3.7402</td> <td>170</td> <td>6.6929</td> <td>32</td> <td>1.2598</td> <td>95RU03</td> <td>95</td> <td>3.7402</td> <td>200</td> <td>7.8740</td> <td>45</td> <td>1.7717</td>	95RU02	95	3.7402	170	6.6929	32	1.2598	95RU03	95	3.7402	200	7.8740	45	1.7717
105 HU02 105 HU02 105 Hu03 100 Hu03 110 Hu10 4.7244 210 Hu23 110 Hu10 4.7244 210 Hu03 110 Hu13 110 Hu13 110 Hu13 110 Hu13 110 Hu10 110 Hu13 110 Hu13 <th< td=""><td>100RU02</td><td>100</td><td>3.9370</td><td>180</td><td>7.0866</td><td>34</td><td>1.3386</td><td>100RU03</td><td>100</td><td>3.9370</td><td>215</td><td>8.4646</td><td>47</td><td>1.8504</td></th<>	100RU02	100	3.9370	180	7.0866	34	1.3386	100RU03	100	3.9370	215	8.4646	47	1.8504
110 HU02 110 4.3307 200 7.8740 38 1.4961 10HU03 110 4.3307 240 9.4488 50 1.9685 120 HU02 120 4.7244 215 8.4646 40 1.5748 120 HU03 120 4.7244 260 10.2362 55 2.1654 130 HU02 130 5.1181 230 9.0551 40 1.5748 130 HU03 130 4.7244 260 10.2362 55 2.1654 130 HU02 130 5.1181 230 9.0551 40 1.5748 130 HU03 140 5.1181 280 11.0236 58 2.1654 2.6055 140 HU02 140 5.5118 250 9.8425 42 1.7717 150 HU03 140 5.1181 280 11.8110 62 2.4409 150 HU02 150 5.9055 210 11.6103 160 6.2992 340 13.3858 68 2.6772 2.4409 160 HU0	105RU02	105	4.1339	190	7.4803	36	1.4173	105RU03	105	4.1339	225	8.8583	49	1.9291
120RU02 120 4.7244 215 8.4646 40 1.5748 120RU03 120 4.7244 215 8.4646 40 1.5748 120RU03 120 4.7244 260 10.2362 55 2.1654 130RU02 130 5.1181 230 9.0551 40 1.5748 130RU03 130 5.1181 280 11.0236 58 2.2835 140RU02 140 5.5118 25055 270 9.8425 42 1.6574 160 5.9055 320 11.8110 62 2.4409 150RU02 150 5.9055 270 10.6299 45 1.7717 150RU03 160 6.2992 340 11.8110 62 2.4409 160RU02 160 6.2992 310 11.4173 48 1.60RU03 160 6.2992 340 13.3858 68 2.6571 170RU02 170 6.6929 360 11.41732 72 2.8346 72 2.8346	110RU02	110	4.3307	200	7.8740	38	1.4961	110RU03	110	4.3307	240	9.4488	50	1.9685
130 HU02 130 F.1181 230 9.0551 40 1.5748 130 HU03 51181 280 11.0236 58 2.2835 140 HU02 140 5.5118 250 9.8425 42 1.6535 140 HU03 140 5.5118 300 11.8110 62 2.4409 150 HU02 150 5.9055 270 10.6299 45 1.7717 150 HU03 160 5.9055 320 12.5984 65 2.4409 160 HU02 160 6.2992 340 11.8110 62 2.6571 170 HU02 170 6.6929 310 12.1777 180 HU03 160 6.2992 340 13.3858 68 2.6571 170 HU02 170 6.6929 310 12.2047 52 2.0472 180 HU03 170 6.6929 360 14.1732 72 2.8346 100 HU02 180 7.0866 330 14.16732 70 14.1732 72 2.9528 <	120RU02	120	4.7244	215	8.4646	40	1.5748	120RU03	120	4.7244	260	10.2362	55	2.1654
140PU02 140 5.5118 250 9.8425 42 1.6535 140PU03 140 5.5118 300 11.8110 62 2.4409 150PU02 150 5.9055 270 10.6299 45 1.7717 150PU03 150 5.9055 320 12.5984 65 2.5591 160PU02 160 6.2992 290 11.4173 48 1.8898 160PU03 160 6.2992 340 13.3858 68 2.6772 170PU02 170 6.6929 310 12.2047 52 2.0472 170PU03 160 6.2992 340 13.3858 68 2.6772 170PU02 170 6.6929 310 12.2047 52 2.0472 170PU03 170 6.6929 360 14.1732 72 2.8346 180PU02 180 7.0866 380 14.1732 72 2.9528 2.9528 190PU02 180 7.4803 400 15.7480 72	130RU02	130	5.1181	230	9.0551	40	1.5748	130RU03	130	5.1181	280	11.0236	58	2.2835
150 HU02 150 5:9055 270 10.6299 45 1.7717 150FU03 150 5:9055 320 12.5984 65 2.5591 160FU02 160 6:2992 290 11.4173 48 1.8898 160FU03 160 6:2992 340 13.3858 68 2.6772 170FU02 170 6:6929 310 12.2047 52 2.0472 170FU03 170 6:6929 360 14.1732 72 2.8346 180FU02 180 7.0866 320 12.5984 52 2.0472 180FU03 170 6:6929 360 14.1732 72 2.8346 180FU02 180 7.0866 380 14.9606 75 2.9528 3.0709 190FU02 190 7.4803 300 14.1732 58 58 2.0558 2.9528 190FU02 190 7.4803 190 7.4803 400 15.7480 72 2.9528 200FU02	140RU02	140	5.5118	250	9.8425	42	1.6535	140RU03	140	5.5118	300	11.8110	62	2.4409
160RU02 160 6.2992 290 11.4173 48 1.8898 160RU03 160 6.2992 340 13.3858 68 2.6772 170RU02 170 6.6929 310 12.2047 52 2.0472 170RU03 170 6.6929 360 14.1732 72 2.8346 180RU02 180 7.0866 320 12.5984 52 2.0472 180RU03 180 7.0866 380 14.1732 72 2.8346 190RU02 190 7.4803 340 13.3858 55 2.0472 190RU03 190 7.4803 400 15.7480 76 2.9528 190RU02 190 7.4803 340 15.7480 76 2.9528 3.0709 200RU02 200 7.8740 360 14.1732 58 2.2835 200RU03 200 7.4803 400 15.7480 75 2.9528 200RU02 200 7.8740 320 7.8740 40	150RU02	150	5.9055	270	10.6299	45	1.7717	150RU03	150	5.9055	320	12.5984	65	2.5591
170RU02 170 6.6929 310 12.2047 52 2.0472 170RU03 170 6.6929 360 14.1732 72 2.8346 180RU02 180 7.0866 320 12.5984 52 2.0472 180RU03 180 7.0866 380 14.1606 75 2.9528 190RU02 190 7.4803 340 13.3858 55 2.1654 190RU03 190 7.4803 400 15.7480 78 3.0709 200RU02 200 7.8740 360 14.1732 58 2.2855 200RU03 200 7.4803 400 15.7480 78 3.0709	160RU02	160	6.2992	290	11.4173	48	1.8898	160RU03	160	6.2992	340	13.3858	68	2.6772
180RU02 7.0866 320 12.5984 52 2.0472 180RU03 180 7.0866 380 14.9606 75 2.9528 190RU02 190 7.4803 340 13.3858 55 2.1654 190RU03 190 7.4803 400 15.7480 78 3.0709 200RU02 200 7.8740 360 14.1732 58 2.2835 200RU03 200 7.4803 400 15.7480 78 3.0709 200RU02 200 7.8740 360 14.1732 58 2.2835 200RU03 200 7.8740 400 16.5354 80 3.1496	170RU02	170	6.6929	310	12.2047	52	2.0472	170RU03	170	6.6929	360	14.1732	72	2.8346
190RU02 7.4803 340 13.3858 55 2.1654 190RU03 190 7.4803 400 15.7480 78 3.0709 200RU02 200 7.8740 360 14.1732 58 2.2835 200RU03 200 7.8740 420 16.5354 80 3.1496	180RU02	180	7.0866	320	12.5984	52	2.0472	180RU03	180	7.0866	380	14.9606	75	2.9528
200RU02 200 7.8740 360 14.1732 58 2.2835 200RU03 200 7.8740 420 16.5354 80 3.1496	190RU02	190	7.4803	340	13.3858	55	2.1654	190RU03	190	7.4803	400	15.7480	78	3.0709
	200RU02	200	7.8740	360	14.1732	58	2.2835	200RU03	200	7.8740	420	16.5354	80	3.1496

Bearings

RADIAL BALL BEARING FIT TOLERANCES

BEARING FIT TOLERANCES

8.5

Shaft rotates-outer ring stationary. Adapted from ABMA Std. 7, Tables 1, 2, 3 and 4. The above shaft (interference) fits and housing (clearance) fits are practical for most standard electric motor applications. Where wider tolerances (housing fits) are permissible, use tolerance class H7 instead of H6. Some applications such as hollow shaft motors, spindle motors and vibrator motors require a different tolerance class than shown in the table. For bearing series other than 200 (e.g., 60xx), identify shaft and housing fits from different rows according to the bearing bore and OD.

8-15

LERANCE
FIT TOI
BEARING
ROLLER
YLINDRICAL

		(ب	Maximum	35.016	37.016	42.016	47.016	52.019	62.019	72.019	80.019	90.022	100.022	110.022	120.022	130.025	140.025	150.025	160.025	170.025	180.025	190.029	200.029	215.029	225.029	240.029	260.032	280.032	300.032	320.036	340.036	360.036	380.036	400.036	420.040	d electric
	using Bore	um)	Minimum	35.000	37.000	42.000	47.000	52.000	62.000	72.000	80.000	90.000	100.000	110.000	120.000	130.000	140.000	150.000	160.000	170.000	180.000	190.000	200.000	215.000	225.000	240.000	260.000	280.000	300.000	320.000	340.000	360.000	380.000	400.000	420.000	ost standai
	00 Series Ho	es)	Maximum	1.3786	1.4573	1.6541	1.8510	2.0479	2.4416	2.8353	3.1503	3.5442	3.9379	4.3316	4.7253	5.1191	5.5128	5.9065	6.3002	6.6939	7.0876	7.4814	7.8751	8.4657	8.8594	9.4499	10.2375	11.0249	11.8123	12.5998	13.3872	14.1746	14.9620	15.7494	16.5370	ictical for m
	Э	(inch	Minimum	1.3780	1.4567	1.6535	1.8504	2.0472	2.4409	2.8346	3.1496	3.5433	3.9370	4.3307	4.7244	5.1181	5.5118	5.9055	6.2992	6.6929	7.0866	7.4803	7.8740	8.4646	8.8583	9.4488	10.2362	11.0236	11.8110	12.5984	13.3858	14.1732	14.9606	15.7480	16.5354) fits are pra
ts (all H6)	Bearing	, ao	mm	35	37	42	47	52	62	72	80	06	100	110	120	130	140	150	160	170	180	190	200	215	225	240	260	280	300	320	340	360	380	400	420	(clearance
Housing Fi		(u	Maximum	30.016	32.016	35.016	40.016	47.016	52.019	62.019	72.019	80.019	85.022	90.022	100.022	110.022	120.022	125.025	130.025	140.025	150.025	160.025	170.025	180.025	190.029	200.029	215.029	230.029	250.029	270.032	290.032	310.032	320.036	340.036	360.036	nd housing
	ousing Bore	(mr	Minimum	30.000	32.000	35.000	40.000	47.000	52.000	62.000	72.000	80.000	85.000	90.000	100.000	110.000	120.000	125.000	130.000	140.000	150.000	160.000	170.000	180.000	190.000	200.000	215.000	230.000	250.000	270.000	290.000	310.000	320.000	340.000	360.000	ence) fits ar
	00 Series Ho	les)	Maximum	1.1816	1.2604	1.3786	1.5754	1.8510	2.0479	2.4416	2.8353	3.1503	3.3474	3.5442	3.9379	4.3316	4.7253	4.9223	5.1191	5.5128	5.9065	6.3002	6.6939	7.0876	7.4814	7.8751	8.4657	9.0562	9.8436	10.6312	11.4186	12.2060	12.5998	13.3872	14.1746	aft (interfere
	2	(inch	Minimum	1.1811	1.2598	1.3780	1.5748	1.8504	2.0472	2.4409	2.8346	3.1496	3.3465	3.5433	3.9370	4.3307	4.7244	4.9213	5.1181	5.5118	5.9055	6.2992	6.6929	7.0866	7.4803	7.8740	8.4646	9.0551	9.8425	10.6299	11.4173	12.2047	12.5984	13.3858	14.1732	e above sha
	Bearing	, ao	mm	30	32	35	40	47	52	62	72	80	85	06	100	110	120	125	130	140	150	160	170	180	190	200	215	230	250	270	290	310	320	340	360	and 4. The
	ameter	n)	Minimum	10.006	12.007	15.007	17.007	20.008	25.008	30.008	35.009	40.009	45.009	50.009	55.011	60.011	65.011	70.020	75.020	80.020	85.023	90.023	95.023	100.023	105.023	110.023	120.023	130.027	140.027	150.043	160.043	170.043	180.043	190.050	200.050	ables 1, 2, 3
	Shaft Di	m)	Maximum	10.012	12.015	15.015	17.015	20.017	25.017	30.017	35.020	40.020	45.025	50.025	55.030	60.030	65.030	70.039	75.039	80.039	85.045	90.045	95.045	100.045	105.045	110.045	120.045	130.052	140.052	150.068	160.068	170.068	180.068	190.079	200.079	A Std. 7, Te
t Fits	ameter	les)	Minimum	0.3939	0.4727	0.5908	0.6696	0.7877	0.9846	1.1814	1.3783	1.5752	1.7720	1.9689	2.1658	2.3626	2.5595	2.7567	2.9536	3.1504	3.3474	3.5442	3.7411	3.9379	4.1348	4.3316	4.7253	5.1192	5.5129	5.9072	6.3009	6.6946	7.0883	7.4823	7.8760	from ABM
Shaf	Shaft Di	(incl	Maximum	0.3942	0.4730	0.5911	0.6699	0.7881	0.9850	1.1818	1.3787	1.5756	1.7726	1.9695	2.1666	2.3634	2.5603	2.7574	2.9543	3.1511	3.3483	3.5451	3.7420	3.9388	4.1357	4.3325	4.7262	5.1202	5.5139	5.9082	6.3019	6.6956	7.0893	7.4834	7.8771	Iry. Adaptec
	Bearing	Bore	mm	10	12	15	17	20	25	30	35	40	45	50	55	60	65	70	75	80	85	06	95	100	105	110	120	130	140	150	160	170	180	190	200	ing stationa
		Tolerance	Class	m5	m6	m6	m6	m6	m6	n6	b6	b6	9d	b6	9d	96	es-outer ri																			
		Basic	Number	00	01	02	03	04	05	90	07	08	60	10	1	12	13	14	15	16	17	18	19	20	21	22	24	26	28	30	32	34	36	38	40	Shaft rotat

Bearings

8.6 BEARING CLEARANCE

Sleeve bearing clearance depends on many factors

By Chuck Yung, EASA Senior Technical Support Specialist

Editor's Note: Sleeve bearings are also known as babbitt bearings, white metal bearings and plain bearings.

Can you settle a disagreement about the subject of sleeve bearing clearance? We have several contradictory guidelines, some of them from manufacturers. Which is best?

It is fair to say that our outlook on life is colored by experiences. In our industry, those experiences often are shaped by the customers we serve. A good example is this question about the proper clearance between a shaft and the sleeve bearing it rides in. Chances are each of us has a rule of thumb for bearing clearance, probably related to shaft diameter. Some of these may look familiar:

- One thousandth, plus 1 per inch of shaft diameter (0.1 mm / cm)
- Two thousandths, plus 1 per inch of shaft diameter (0.2 mm / cm)

- 0.0015" per inch of shaft diameter (0.15 mm / cm)
- 0.002" per inch of shaft diameter (0.3 mm / cm)

DEPENDS ON APPLICATION

They can't all be right, yet many of us may have used one of these rules (probably not the same one, either!) with great success. Which one, if any, is correct? The answer depends on the application.

If your customer base includes slow-speed synchronous motors, you have probably seen motors operating fine with more than twice the recommended clearance. The person who works primarily on 2-pole petrochemical motors knows they can vibrate when the bearing clearance is even slightly excessive.

One of the first things to consider when looking at guidelines for bearing clearance is whether it is radial or diametral. We are going to talk in terms of diametral clearance–total clearance–because we physically measure the shaft and bearing diameters to determine the clearance. Another reason to use diametral clearance: In operation, a horizontal machine rarely has the same radial clearance at the 12:00 and 6:00 positions.

To illustrate just how many guidelines there are for this simple topic, I have combined guidelines from five manufacturers and three other reputable sources into a single graph (Figure 8-6). First we need to recognize that most **horizontal** electrical rotating machinery uses what is called a **cylindrical overshot** bearing design. This term describes how the bearing is lubricated—with oil supplied by oil rings.

To understand why each of those rules-of-thumb exists, let's sum up the factors a designer of sleeve bearing motors must take into account. Remember the relationship between power, torque and rpm?

> Torque (lb-ft) = hp x 5252 / rpm or Torque $(N \cdot m) = kW \times 9550 / rpm$

The higher the **torque** (lower speed and/or higher hp/kW rating), the larger the required shaft diameter. The **heavier** the rotor, the bigger the bearing must be. The **faster** the speed, the smaller the allowable journal diameter. The **longer** the bearing, the greater the clearance required to get the oil out.

CONSIDERATIONS IN SLEEVE BEARING DESIGN

The major factors, in order of importance, that influence sleeve bearing design include:

- Weight to be supported
- Peripheral speed of shaft journal
- Viscosity of lubricant
- Operating temperature

Designers of electrical rotating equipment generally keep sleeve bearing load pressure around 145 psi (1 Mpa), as

compared with the 580-725 psi (4-5 Mpa) used for internal combustion engines. Some older motors used even lower bearing load pressure, so vintage machines sometimes have a larger bearing than a modern motor with similar characteristics.

Excessive weight can distort soft babbitt, so bearing crosssectional area increases in proportion to the load. Higher hp/ kW ratings mean more torque, hence a larger shaft diameter. Peripheral speed increases with the rpm, or when the shaft diameter increases. For hydrostatic, cylindrical-overshot bearings (the sleeve bearings most common to electrical machinery) the upper peripheral speed limit is approximately 6,000 ft (1,830 m) per minute. Higher speeds require special designs, starting with 2-lobe, then 4-lobe bearings, as well as special lubrication methods (Figure 8-7).

Most rotating electrical machinery sleeve bearing lubrication is supplied by oil rings, so a minimum speed is required to ensure that the rings deliver sufficient oil to the bearings. That minimum speed is around 25-30 ft (7.5-9 m) per minute; be *very* cautious when an application, such as a VFD, significantly alters the original design. A force-lubrication system may be required, or even hydraulic jacking, to lift the shaft onto an oil film before starting.

When the peripheral speed limit restricts journal diameter, the designer must increase the length of the sleeve bearing. That brings us to the ratio of bearing length to diameter (L/D). For reasons of economy, the preference is for a 1:1 ratio–e.g. a bearing with 3" bore diameter and 3" length. There are drawbacks to a proportionally longer bearing. As the L/D ratio increases:

- Less oil flow exiting the bearing = higher bearing temperature
- Shaft deflection = diagonal contact with ends of bearing
- Longer machine = Higher production costs

The longer and heavier the rotor, or the more flexible the shaft, the more shaft deflection (Figure 8-8) should be expected. Shaft deflection may force the designer to increase the clearance between the sleeve bearing and journal. Longer bearings require longer shaft journals, which in turn require longer bearing brackets and larger machines. Self-aligning bearings are used to facilitate assembly, to overcome variations in machining of the end bracket and bearing housing, and to reduce fitting time. They do not shift to correct orientation changes after the motor has been fully assembled.

Viscosity of the oil is less of a factor than the supported weight and peripheral speed, although one the designer must consider. The OEM manual specifies the recommended oils for the machine so, unless bearing design modifications have occurred, we as repairers should stick with the recommended lubricants. Sometimes, a 2-pole machine benefits from a lower viscosity oil, but such changes should only be made in consultation with the OEM or customer, and even then with caution.

Because one of the variables the designer considered is peripheral speed of the shaft, a sleeve bearing machine operating from an adjustable-speed drive adds a new set of challenges. It may be necessary to add forced-oil lubrication to supplement the oil rings.

A heavy rotor increases shaft sag. The journal may rub the bearings at the places indicated by arrows. To prevent that, the designer increases the clearance.

VERTICAL MACHINES: WHY ARE THEY DIFFERENT?

To begin with, the same spindly shaft and heavy rotor does not result in the shaft deflection we experience in horizontal machines. While the shaft rests on the bottom of a horizontal bearing, it hangs more-or-less centered in the vertical thrust bearing. There is no radial sag to worry about. As long as there is sufficient radial clearance for the oil film, the vertical guide bearing needs no additional clearance. Guide bearings for vertical sleeve bearing machines are not the cylindrical overshot design, and should have much less clearance than horizontal machines with similar journal diameters. Contact the OEM or EASA Technical Support for guidance.

LABYRINTH SEALS

The closer the labyrinth seal is to the shaft, the better it will seal. Of course, if it touches the shaft both may be damaged, and you can expect rapid increases in temperature and vibration levels (especially axial on the end that is rubbing.) Rather than determining labyrinth seal clearance from the shaft diameter, it is better to work from the sleeve bearing clearance. A good guideline, used by several manufacturers, is that the labyrinth seal should have 0.002 - 0.004" (0.05 - 0.10 mm) more radial clearance than the bearing. It should be obvious that the labyrinth seal clearance for a vertical machine can be set closer than for a comparable horizontal machine. (Note: Materials that are susceptible to galling may require larger clearance.)

CONCLUSION

There are a lot of sleeve bearing clearance tables circulating around our industry, but some of them are specific to a specific type of motor–like low-speed synchronous motors–and should never be applied universally. In broad terms:

- Low-speed motors can operate with more clearance.
- · Longer bearings require more clearance.
- Vertical sleeve bearings require less clearance.
- · Hermetics require tighter clearance.
- Labyrinth seals should be as close as possible, without contacting the shaft.

About those rules of thumb: If you have had good success with one for your routine jobs, watch out for sleeve bearings that differ from your usual work. Examples would include 2-poles versus low-speed machines, a significantly different length/diameter ratio, or vertical machines. In those cases, contact the manufacturer or EASA Technical Support for help.

Note: This article was first published in *EASA Currents* (August 2005). It was reviewed and updated as necessary in September 2019.

LOCK NUTS AND LOCK WASHERS FOR BALL BEARINGS 8.7

DIMENSIONS IN INCHES

LOCK NUTS							I	OCK WASHER	S
Lock	Threads	Diameter	Out thick	side (ness D	Fa dian	ace neter E		Lock washer	Thickness
number	inch	C	MIN.	MAX.	MAX. MIN. MAX.			number	Q
N-00	32	3/4	0.209	0.229	0.605	0.625	ľ	W-00	0.042
N-01	32	7/8	0.303	0.323	0.699	0.719		W-01	0.042
N-02	32	1	0.303	0.323	0.793	0.813		W-02	0.042
N-03	32	1 ¹ /8	0.334	0.354	0.918	0.938	Ē	W-03	0.042
N-04	32	1 ³ /8	0.365	0.385	1.105	1.125		W-04	0.042
N-05	32	1 9/16	0.396	0.416	1.261	1.281		W-05	0.050
N-06	18	11/4	0.396	0.416	1.480	1.500	Ī	W-06	0.050
N-07	18	2 ¹ /16	0.428	0.448	1.793	1.813		W-07	0.050
N-08	18	21/4	0.428	0.448	1.980	2.000		W-08	0.058
N-09	18	217/32	0.428	0.448	2.261	2.281	ſ	W-09	0.058
N-10	18	2 ¹¹ /16	0.490	0.510	2.418	2.438		W-10	0.058
N-11	18	2 ³¹ /32	0.490	0.510	2.636	2.656		W-11	0.063
N-12	18	35/32	0.521	0.541	2.824	2.844	Γ	W-12	0.063
N-13	18	3 ³ /8	0.553	0.573	3.043	3.063		W-13	0.063
N-14	18	35/8	0.553	0.573	3.283	3.313		W-14	0.063
AN-15	12	37/8	0.584	0.604	3.533	3.563		W-15	0.072
AN-16	12	45/32	0.584	0.604	3.814	3.844		W-16	0.072
AN-17	12	4 ¹³ /32	0.615	0.635	4.001	4.031		W-17	0.072
AN-18	12	4 ²¹ /32	0.678	0.698	4.251	4.281		W-18	0.094
AN-19	12	4 ¹⁵ /16	0.709	0.729	4.533	4.563		W-19	0.094
AN-20	12	5 ³ /16	0.735	0.760	4.783	4.813		W-20	0.094
AN-21	12	5 ⁷ /16	0.735	0.760	4.970	5.000		W-21	0.094
AN-22	12	5 ²³ /32	0.766	0.791	5.251	5.281		W-22	0.125
AN-24	12	61/8	0.798	0.823	5.658	5.688		W-24	0.125
AN-26	12	6 ¹ /4	0.860	0.885	6.158	6.188		W-26	0.125
AN-28	12	7 ³ /32	0.923	0.948	6.501	6.531		W-28	0.125
AN-30	12	7 ¹¹ /16	0.954	0.979	7.033	7.063		W-30	0.156
AN-32	8	8 ¹ /16	1.016	1.041	7.398	7.438		W-32	0.156
AN-34	8	8 ²¹ /32	1.048	1.073	7.991	8.031		W-34	0.156
AN-36	8	9 ¹ /16	1.079	1.104	8.335	8.375		W-36	0.156
AN-38	8	9 ¹⁵ / ₃₂	1.110	1.135	8.741	8.781		W-38	0.156
AN-40	8	9 ²⁷ / ₃₂	1.173	1.198	9.116	9.156		W-40	0.156
N-44	8	11	1.230	1.260	9.803	9.843		W-44	0.156

Note: Verify threads per inch on the shaft with a thread gage prior to installation. Refer to bearing manufacturer's specifications for lock nuts on precision bearings.

LOCK NUTS AND LOCK WASHERS FOR BALL BEARINGS

DIMENSIONS IN MILLIMETERS

LOCK NUTS

LOCK NUTS							LO	CK WASHERS
Lock nut number	Thread size	Threads per mm	Outside diameter C	Thickness D	Face diameter E		Lock washer number	Thickness Q
AN05	M25x1.5	1.5	38	7	32		AW05	1.2 mm
AN06	M30x1.5	1.5	45	7	38		AW06	1.2 mm
AN07	M35x1.5	1.5	52	8	44		AW07	1.2 mm
AN08	M40x1.5	1.5	58	9	50	[AW08	1.2 mm
AN09	M45x1.5	1.5	65	10	56		AW09	1.2 mm
AN10	M50x2	2.0	70	11	61		AW10	1.2 mm
AN11	M55x2	2.0	75	11	67	[AW11	1.2 mm
AN12	M60x2	2.0	80	11	73		AW12	1.5 mm
AN13	M65x2	2.0	85	12	79		AW13	1.5 mm
AN14	M70x2	2.0	92	12	85] [AW14	1.5 mm
AN15	M75x2	2.0	98	13	90		AW15	1.5 mm
AN16	M80x2	2.0	105	15	95		AW16	1.8 mm
AN17	M85x2	2.0	110	16	102] [AW17	1.8 mm
AN18	M90x2	2.0	120	16	108		AW18	1.8 mm
AN19	M95x2	2.0	125	17	113		AW19	1.8 mm
AN20	M100x2	2.0	130	18	120] [AW20	1.8 mm
AN21	M105x2	2.0	140	18	126		AW21	1.8 mm
AN22	M110x2	2.0	145	19	133		AW22	1.8 mm
AN23	M115x2	2.0	150	19	137] [AW23	2.0 mm
AN24	M120x2	2.0	155	20	138		AW24	2.0 mm
AN25	M125x2	2.0	160	21	148		AW25	2.0 mm
AN26	M130x2	2.0	165	21	149		AW26	2.0 mm
AN27	M135x2	2.0	175	22	160		AW27	2.0 mm
AN28	M140x2	2.0	180	22	160		AW28	2.0 mm
AN29	M145x2	2.0	190	24	171		AW29	2.0 mm
AN30	M150x2	2.0	195	24	171		AW30	2.0 mm
AN31	M155x3	3.0	200	25	182		AW31	2.5 mm
AN32	M160x3	3.0	210	25	182		AW32	2.5 mm
AN33	M165x3	3.0	210	26	193		AW33	2.5 mm
AN34	M170x3	3.0	220	26	193		AW34	2.5 mm
AN36	M180x3	3.0	230	27	203	[AW36	2.5 mm
AN38	M190x3	3.0	240	28	214		AW38	2.5 mm
AN40	M200x3	3.0	250	29	226		AW40	2.5 mm
AN44	Tr220x4	4.0	280	32	250		AL44	4.0 mm

Note: Verify threads per millimeter on the shaft with a thread gage prior to installation. Refer to bearing manufacturer's specifications for lock nuts on precision bearings.

8.8 UNDERSTANDING AND ADJUSTING THRUST ROLLING BEARING SYSTEMS FOR VERTICAL MOTORS

Manny Garcia Miami, FL Chuck Yung EASA Senior Technical Support Specialist

Thrust rolling bearing systems

Vertical motor bearing systems can be much more complicated than those used in horizontal motors. This article describes the bearings systems used on vertical motors up to 500 hp (375 kW) of all speeds and enclosures. It also explains how to adjust these bearing systems to avoid premature failures.

COMPARISON OF HORIZONTAL AND VERTICAL BEARING SYSTEMS

General-purpose, grease-lubricated horizontal motors are designed to mount either horizontally or vertically and can be direct coupled or radially connected to the driven equipment (Figure 8-9). These motors normally have ball bearings (Figure 8-10) or roller bearings. Large, horizontally mounted motors may use hydrodynamic, oil-lubricated sleeve bearings that are not designed for external loading on the bearing.

Definite-purpose vertical motors can be grease- or oillubricated. They are normally direct coupled and are designed to operate with a wide range of thrust loading vertical bearing systems (Figure 8-11). Large vertical motors with extremely high downward thrust may use a hydrodynamic, tilting plate bearing in conjunction with a guide (pilot) bearing.

Ball bearing nomenclature

Free-form design of vertical motor bearing system.

Figure 8-12 shows common bearing configurations for solid-shaft vertical motors. Figure 8-13 illustrates bearing systems for hollow-shaft vertical motors.

FIGURE 8-12: SOLID-SHAFT VERTICAL BEARING ASSEMBLIES BEARING HOLDER LOCK NUT AND WASHER COUPLING ADJUSTING NUT BEARING CAP LOCK WASHER O-RING BEARING CARRIER TOP BEARING BATCHET CAP VENT BEARING BEARING THRUST BEARING STAND TUBE SPIRAL LOCK RETAINING RING REARING METERING LOCK WASHER BEARING BRACKET BEARING STAND TUBE LOCK NUT MOTOR SHAFT TOP BRACKET Thrust bearing (top end, medium thrust) Thrust bearing (top end, low thrust with one bearing thrust up) BEARING HOLDER TOP BEARING MOTOR SHAFT CAP O-BING BEARING CAP TOF CAP BOL BEARING CAP BOLTS BEARING CARRIER BEARING BEARING PRE-LOAD SPRING BEARING BRACKET SNAP RING OIL METERING ORIFICE STAND TUBE BEARING BRACKET STAND TUBE MOTOR SHAFT OIL METERING PLUG Pilot bearing (bottom end guide bearing) Spherical roller thrust bearing (top end, high thrust)

VERTICAL BEARING SYSTEM DESIGN AND VIBRATION

Issues associated with vertical bearing system design specifications may affect the reed critical frequency of the motor. Even two motors of similar weight may have considerably different resonant frequencies. This is usually discovered when a critical motor is replaced and the spare has unexpectedly high vibration levels.

The solution is to change the stiffness and/or mass of the motor-pump assembly, and change (preferably lower) its center of gravity. For hollow-shaft machines, this may be accomplished by adding a 2"-8" (5-20 cm) thick steel spacer beneath the motor base. The thicker/heavier the plate, the greater the effect will be.[11]

Vibration also increases due to poor mating of the thrust bearing. In one case when an end user specified thrust bearing capacity far beyond what the pump generated, the manufacturer deliberately offset the rotor high so the magnetic centering force would exert at least the minimum thrust load on the bearing. Thrust bearings do not all have the same angle of contact, retainer material, and so forth. Changes to one aspect of a bearing may significantly alter its performance.

Installation is also important. Establish benchmarks for all new installations and after each repair. Any changes in vibration levels, bearing temperature or motor current may warrant attention to determine the cause.

The bearing systems in vertical motors are more complex than those in comparable horizontal motors. Basic understanding of their unique characteristics, thrust and lubrication requirements is critical to assure proper selection, care and operation, and often can make it possible to identify and solve application problems.

Bearing systems for vertical machines are robust and should yield long, trouble-free service. For this reason, any failure should prompt detailed root-cause failure analysis to uncover the cause and evaluate possible remedies. Unless a misapplication is identified or the pump thrust requirements have changed, it is essential to duplicate the original bearing system.

Adjustment of thrust rolling bearings for vertical motors

This section describes procedures for removing, mounting and installing thrust bearings for vertical motors. It also explains how to measure and adjust thrust bearing end play on both solid-shaft and hollow-shaft vertical motors.

THRUST BEARING TYPES

There are basically two kinds of thrust bearings for vertical motors: angular contact ball bearings and spherical roller bearings (with or without springs). See Figure 8-14 and Figure 8-15 (Page 8-25).

PRE-REMOVAL PROCEDURES

Vertical motors with angular contact ball or spherical roller thrust bearings require a minimum external thrust load. Prior to disassembly, measure the distance from the top of the shaft to the top of the lock nut (in decimal places) with a depth micrometer to serve as a reference to thrust (Figure 8-16, Page 8-25). Record this measurement for both hollow shaft and solid shaft motors, but do not rely on it. There are many explanations for why this dimension could be incorrect!

Before removing the bearing, determine the bearing type and whether the mounting is tandem or back-to-back (Figure 8-17, Page 8-25). The outer race will have a wide flange and a narrow one.

- If the wide flange of the top bearing meets the narrow flange of the bottom bearing, the bearings are tandem.
- If both narrow flanges meet, they are face to face.
- If both wide flanges meet, they are back-to-back.

A good confirmation is to check for parts needed to secure the bearing set to be capable of upthrust without being pushed out of the bearing housing. There should be a ring holding down the outer race of the upper bearing and a large AN nut or spiral-lock snap ring on the skirt of the bearing mount that prevents the bearings from being pushed off of the journal.

During disassembly carefully record all bearing numbers. Good practice is to make a sketch of the bearing thrust orientation.

MOUNTING AND INSTALLATION

- 1. Do not face bearings the wrong way.
 - Angular contact bearings are designed to take the thrust load in one direction only. During assembly, it is important not to install such bearings backwards and not to apply the thrust load against the snap (counter bore) side of the outer ring. Refer to the sketch made during disassembly. Mounting the bearings incorrectly could cause any one of the following problems:
 - The bearing will not support the thrust load.
 - The bearing will not give proper rigidity.
 - The bearing may separate.
- Do not mix bearings from different manufacturers. Duplex bearings are single-row bearings that are specially ground for use in matched sets. They are sometimes designated as "1/2 pair" or "universally ground" and may be used as DB or DT bearings.
- 3. Do not mix duplex bearings from different manufacturers.

DETERMINING END PLAY SETTINGS

If the motor is disassembled for any reason, the rotor end play must be readjusted. Depending upon the type of thrust bearing, use one of the following procedures to determine the correct end play settings.

1. Spherical roller thrust bearings and angular contact bearings (with springs)

Setting the correct end play for preload on spherical roller or angular contact thrust bearings (with springs) requires a controlled assembly method, due to various deflections internal to the motor and friction of lock nut threads from spring force. An end play setting of 0.005" to 0.010" (0.13 to 0.25 mm) is recommended to allow the lower guide bearing to return to an unload position when external thrust is applied to the motor (Figure 8-18).

To find the correct end play settings for these bearings:

- Place the spring retainer (minus springs) and the lower thrust washer of the bearing into the bore of the upper bearing bracket.
- Using a depth micrometer, measure the distance between the top of the lower thrust washer and the faced surface on top of the bearing housing. Record

this dimension to three decimal places. This is for reference only; do not rely on this value.

Note: Certain motor designs require removal of the oil baffle to provide access for depth micrometer measurements.

- Add 0.005" (0.13 mm) and 0.010" (0.25 mm), respectively, to the recorded dimension to determine the correct minimum and maximum end play settings for the unit.
- Reassemble the bearing with springs and set the end play using one of the methods described under "End play Adjustment Methods."

Thickness

Note: Motors built with spherical roller thrust or angular contact bearings with springs require a minimum external thrust load sufficient to compress the upper die springs and unload the lower guide bearing from axial spring thrust. Refer to the motor's spring thrust plate for the required minimum thrust. *Do not run the motor without the minimum external thrust load for more than fifteen minutes* because lower bearing damage may occur.

2. Angular contact ball bearings (without springs)

No preliminary measurements are required to set end play with these bearings. End play may be set using either of the methods described below.

• To correctly adjust the rotor end play setting on units with angular contact ball bearings without springs, position a dial indicator to read the axial movement of the shaft (Figure 8-19). Turn the rotor adjusting lock nut until no further upward movement of the shaft is indicated. Then zero the dial indicator and loosen the lock nut to lower the shaft enough to prevent preloading of the bottom guide bearing at room temperature.

FIGURE 8-19

Various manufacturers give this distance as a range, typically between 0.005" to 0.015" (0.13 to 0.39 mm). The purpose is to position the bottom guide bearing as high as possible within the lower bearing housing to provide for sufficient room for thermal growth of the shaft.

- Solid-shaft motors having two (or more) opposed angular contact bearings are locked on the mount for up-and-down thrust and should not be adjusted for "thrust." Rather, the bearing carrier must be clamped to prevent movement on the shaft. The bearing carrier in these designs should be shouldered against a step on the shaft, and the upper nut tightened to clamp the bearing carrier and prevent relative movement between the bearing carrier and shaft. *If a motor was designed to have facing or back-to-back thrust bearings, it is necessary to clamp both the outer and inner races.*
- Some manufacturers rely on the lower guide bearing to handle up-thrust. Others use one thrust bearing in the up-thrust orientation. For a vertical solid-shaft motor, the "AH" (shaft extension) prevents the guide bearing in the lower bracket from taking external thrust. If a motor is found to have thrust bearings in opposing directions of thrust, and the inner or outer races are not clamped, contact the end user to determine if the pump requires the ability to handle up-thrust. If so, modification will be required.
- The inner races can be clamped by a bearing lock nut (the most common method) or by a spiral-lock snap ring. A conventional snap ring is not suitable for this purpose.

END PLAY ADJUSTMENT METHODS

Method 1

Lift the motor with the overhead crane. Slowly lower the motor until the shaft touches the floor. Place a dial indicator on top of the motor to measure shaft movement.

Lower the motor gently until there is no further shaft movement. Tighten the lock nut snug. Raise the motor to confirm there is no shaft movement. Only for motors with all thrust bearings mounted thrust down: Back the nut off to lower the shaft between 0.005" and 0.015" (0.13 and 0.39 mm) and lock the nut in place.

Notes

- If a crane is not available, the same thing can be accomplished by tightening the top nut to lift the shaft. Tighten the nut until the shaft no longer moves upward; then loosen the nut to drop the shaft the prescribed distance. Use of a crane is preferred to avoid deforming the locking notches in the AN lock nut.
- When an N or AN lock nut is used, it must be accompanied by a lock washer of the same designation (e.g., an AN 15 nut requires a W-15 locking washer).
- Special equipment required:
- Overhead crane
- Spanner wrench
 Dial in diastar
- Dial indicator

Mounting springs are compressed, and only the rotor is lifted by lock nut.

Method 2: Spring-loaded bearings only

This method uses a spreader bar with chains that wrap around the lifting lugs, a crane to lift the spreader bar, and an appropriately-sized hydraulic or bottle jack. The jack, supported by two steel blocks of equal thickness on top of the bearing mounting, pushes against the spreader bar to compress the mounting springs (Figure 8-20). To make the lock nut easier to turn on very heavy solid-shaft rotors, lift the rotor using a second jack placed beneath the motor base. Now position a dial indicator as shown in Figure 8-19 and turn the lock nut until there is no further upward movement of the shaft. Finally, loosen the lock nut to obtain the correct end play range (determined earlier) and secure it with the lock washer.

Note: This method uses ordinary shop tools and equipment and allows end play settings on larger vertical motors to be checked quickly. The lock nut lifts only the weight of the rotor.

TABLE 8-3: BOLT TORQUE VALUES

Grade 8 bolt	Toro	que*					
size	lb•ft	N∙m					
5/16"	20	27					
3/8"	37	50					
1/2"	90	122					
5/8"	180	244					
3/4"	320	434					
1"	710	963					
	Torque*						
Metric class	Toro	que*					
Metric class 8.8	Toro Ib∙ft	que* N∙m					
Metric class 8.8 M8x1.00	Toro Ib•ft 18	que* N∙m 24					
Metric class 8.8 M8x1.00 M10x1.50	Toro 1b•ft 18 35	que* <u>N∙m</u> 24 48					
Metric class 8.8 M8x1.00 M10x1.50 M12x1.75	Tore 1b•ft 18 35 59	aue* N∙m 24 48 80					
Metric class 8.8 M8x1.00 M10x1.50 M12x1.75 M12x2.00	Tore 1b•ft 18 35 59 94	nue* 24 48 80 126					
Metric class 8.8 M8x1.00 M10x1.50 M12x1.75 M12x2.00 M18x2.50	Toro 1b•ft 18 35 59 94 210	aue* N⋅m 24 48 80 126 285					

* Torque values are for dry threads.

Special equipment required:

- Overhead crane
- Large spreader bar with chains and locking bolts
- Spanner wrench
- Hydraulic jack or bottle jack (appropriately-sized for the rotor weight)
- Depth micrometer
- Metal blocks
- Dial indicator

COUPLINGS FOR HOLLOW-SHAFT MOTORS

To ensure proper functioning, coupling bolts for hollow-shaft motors must be tightened to the torque values recommended by the manufacturer. If these are not available, Table 1 may be used as a guide.

Caution: The installer is always responsible for tightening coupling bolts to the proper torque values. This includes instances when the coupling comes mounted on the motor. Failure to do so may result in the coupling bolts shearing, and extensive damage to the equipment.

Note: This article was first published as *EASA Tech Note 21* (February 1995), using information provided by U.S. Electrical Motors. It was reviewed and updated as necessary in October 2018.

8.9 BEARING FAILURE ANALYSIS

Understanding bearing vibration frequencies

By Dave Felten Mechanical Field Service Department L&S Electric, Inc. Schofield, WI

Welcome to the age of predictive maintenance technologies. More and more of our customers are using tools such as vibration analysis to assess the health of their rotating equipment. Many of them are also using this technology to assess new and rebuilt rotating equipment once it's installed and running. This serves two main purposes:

- It demonstrates the quality of the newly acquired/repaired equipment (taking the burden off the supplier/service center should the equipment vibrate once it's installed).
- It provides a baseline for trending.

Unfortunately, these initial vibration readings can be pushed into an "alarm status" by many customer-related issues such as poor coupling alignment and/or machine installation. This is why it's so important for today's repair facility to provide the customer with "baseline" vibration data gathered during its final test run, providing evidence that the rotating equipment ran within general vibration guidelines before being shipped.

Vibration frequency analysis can expose many mechani-

cal and electrical problems in an electric motor. This article is discusses one of these: Bearing defects.

ROLLING ELEMENT BEARING DEFECTS

Defects in general rolling element bearings can be generated by fatigue, wear, poor installation, improper lubrication and, occasionally, manufacturing faults in the bearing components.

Being the typical bearing found in electric motors, the rolling element bearing is made up of the following components (Figure 8-21):

- Outer race
- Inner race
- Cage
- Rolling element (ball, roller or tapered roller)

Figure 8-21 also shows the pitch diameter (Pd), which is the span between the centers of two opposite rolling elements.

When a bearing spins, any irregularity in the raceway surfaces or in the roundness of the rolling elements excites periodic frequencies called **fundamental defect frequencies**. These are:

- FTF–Fundamental train frequency (frequency of the cage)
- BSF–Ball spin frequency (circular frequency of each rolling element as it spins)
- BPFO–Ball pass frequency of the outer race (frequency created when all the rolling elements roll across a defect in the outer race)
- BPFI–Ball pass frequency of the inner race (frequency created when all the rolling elements roll across a defect in the inner race)

Fundamental defect frequencies depend upon the bearing geometry and shaft speed. Once you identify the type of bearing installed, you can either calculate the defect frequencies yourself or request the defect multipliers from the manufacturer. (Providers of vibration analysis software often incorporate a database that contains these multipliers from various bearing manufacturers.)

TABLE 8-4: BEARING DEFECT FREQUENCIES

Bearing ID	Number of rolling elements	FTF	BSF	BPFO	BPFI
9436	19	0.434	3.648	8.247	10.753
9437	19	0.434	3.648	8.247	10.753
9442	22	0.443	4.191	9.740	12.260

Example

If you have the defect multipliers at your disposal, the process of calculating the defect frequency is as follows:

- 1. Look up the bearing number that is exhibiting the suspect vibration frequency on a table like Table 1.
- 2. Multiply this number by the shaft speed mated with this bearing to determine the defect frequency that would be generated by a defect on the element in question (Figure 8-22).

 $9.740 \ge 351$ rpm shaft speed = 3419 cpm

If the frequency and harmonics (multiples) of it are present on the vibration spectra, you most probably have an outer race bearing defect. It could be a spall on the raceway, electrical fluting, false brinelling acquired during bearing storage or equipment transport, and so on.

Be advised that there will be occasions when the calculated defect frequencies don't exactly match the bearing defect frequencies that appear in the vibration spectra.

Typically, this is due to higher than normal thrust loads, which cause the bearing to run at a different contact angle. These abnormal thrust loads can be caused by such sources as misalignment.

Note that not all bearing manufacturers use the same number of rolling elements in a particular bearing size.

The most common bearing problem is the outer race defect in the load zone; inner race faults are the next most common. It is very rare to see a fault at the bearings ball spin frequency (BSF).

Action step. If of any of these four fundamental fault frequencies are present, the repair technician should replace the bearing and ensure that the housing fits and shaft journals are within tolerance.

Finally, it's worth discussing the presence of mechanical looseness, which manifests itself as harmonics of 1x running speed on a new or rebuilt bearing housing or journal. This indication of looseness could be coming from poor base For those interested in **calculating** the defect frequencies, the formulas are listed below. Today, it is difficult to get these parameters. Typically the manufacturer will simply supply one with the multipliers.

You'll need to find the following key parameters:

- 1. Rolling element diameter
- 2. Pitch diameter
- 3. Number of rolling elements
- 4. Contact angle
- 5. Speed

Formula 1: FTF=S/2 x $[1 - (Bd/Pd \times \cos\Theta)]$ Formula 2: BSF=Pd/2Bd x S x $[1 - (Bd/Pd \times \cos\Theta)2]$ Formula 3: BPFO=Nb/2 x S x $[1 - (Bd/Pd \times \cos\Theta)]$ Formula 4: BPFI=Nb/2 x S x $[1 + (Bd/Pd \times \cos\Theta)]$

Where:

FTF	=	Fundamental train frequency (Hz)
BSF	=	Ball spin frequency (Hz)
BPFO	=	Ball pass frequency of outer race (Hz)
BPFI	=	Ball pass frequency of inner race (Hz)
Nb	=	Number of rolling elements
S	=	Speed (revolutions per second)
Bd	=	Ball diameter (in or mm)
Pd	=	Pitch diameter (in or mm)
Θ	=	Contact angle (degrees)

FIGURE 8-23

Looseness from wear or clearance problems.

mounting or one of the following:

- · Loose housing-to-outer race fits
- · Loose journal-to-inner race fits
- Excessive internal bearing clearance

SLEEVE BEARING DEFECTS

Sleeve bearings do not make use of rolling elements; rather, the shaft rides on a layer of lubricating oil inside the bearing bore. The lubricant is either sealed inside the bearing, gravity fed to the bearing, or pumped in (pressure fed).

Sleeve bearings which have excessive wear/clearance exhibit a vibration spectrum similar to the one in Figure 8-23. Notice the series of running speed harmonics (up to 10 or 20). Wiped sleeve bearings often show much higher vertical amplitudes than horizontal. A higher axial reading on one end than the other provides further indication, with the higher vibration level on the end with the damaged bearing.

In contrast, mechanical looseness caused by loose mounting bolts or cracks in the frame structure or bearing pedestal typically look like the spectrum in Figure 8-24.

Excessive looseness can also cause subharmonic multiples at exactly 1/2 or 1/3 x rpm (.5x, 1.5x, 2.5x, etc.).

SUMMARY

The final vibration test in the service center helps ensure that the customer is receiving a top-notch repair. You'll rest easier knowing that your repair work passed general vibration guidelines, and your sales team will love selling this added value to your customers.

By providing documented vibration spectra with a rotating equipment repair service, your service center is less likely to receive a call immediately after the newly repaired equipment is reinstalled and starts vibrating. Customers will be more inclined to first verify things within their control, such as the mounting and coupling alignment.

Note: This article was first published in *EASA Currents* (September 2003). It was reviewed and updated as necessary in October 2018.

The cause and analysis of bearing failures in electric motors

By Austin H. Bonnett, Fellow IEEE EASA Technology & Education Consultant

INTRODUCTION

Bearing failures account for the majority (50% to 65%) of all motor failures in industrial applications [1]. In the past few years with the wide use of PWM inverter drives, motor bearing failures have increased. The root cause of these failures is shaft-to-ground currents passing through the bearings.

BEARING STRESS

For convenience of analysis, it is useful to categorize the known stresses acting upon a bearing as follows:

- 1. Dynamic and static loading
- 2. Thermal
- 3. Vibration and shock
- 4. Environmental
- 5. Electrical current
- 6. Shear stress
- 7. Mechanical

It should be noted that as long as these stresses are kept within the design capabilities of the bearing system, premature failure should not occur. However, if any combination of them exceeds the bearing capacity, then the life may be drastically diminished and a catastrophic failure could occur.

BEARING FUNDAMENTALS

The prediction of rating fatigue life, commonly referred to as L10 life, is predicated on the assumption that the primary cause of failure is *material fatigue*. The L10 is the estimated time for 10% of a large population to fail. This relationship is shown in Figure 8-25. Life on this chart is relative to the load relationship. If L10 is one year, then L50 or the average life (as many have survived, as have failed) is 5 times that, or

5 years. This means that for an application with a L10 life of 1 year, 10% of the bearings may fail within that first year, and that one-half of the bearings may fail after 5 years.

The life for ball bearings is approximately inversely proportional to the load raised to the third power and inversely proportional to the speed. These relationships are only valid within certain constraints relating to the bearing size, design, lubrication, temperature, load and speed:

$$L_{10} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^a$$

a = 3 for ball bearings n =Speed (rpm)

- a = 10/3 for roller bearings
- C = Bearing dynamic load rating
- P = Equivalent bearing load

Each bearing has a limiting speed determined by its physical characteristics, which relates to the basic size, type, configuration and the type of lubrication used. Exceeding the bearing speed limit can result in excessive temperatures, deterioration of lubricant, vibration, and loss of the effective internal clearance, hence, a reduction in bearing life.

It should also be pointed out that grease-lubricated bearings normally have lower speed limits than oil-lubricated bearings, especially on larger motors.

The material and quality of the bearing cage will also affect the speed limitation of the bearing. Improved bearing geometry will allow for increased speed and lower noise levels.

FIGURE 8-27

Figure 8-26 and Figure 8-27 provide free-body diagrams of the bearing loading typically seen on horizontal and vertical motors.

STEPS IN THE BEARING FATIGUE PROCESS

- 1. Microscopic subsurface fractures of metal due to cyclic loading stress produce thin layers of surface, which flake off and are the beginning of spalling.
- 2. Some increase in noise and vibration will occur.
- 3. A change in critical dimensions will start.
- 4. Noise, vibration, friction, heat and wear accompanied by more advanced spalling; it is no longer safe or prudent to operate the machine.
- 5. The final step is advanced spalling, usually followed by a catastrophic failure.

THERMAL LIMITS

For rolling bearings, which are typically used in electric motors, the bearing operating temperature should not normally exceed 212° F (100° C), assuming that the bearing is properly applied and lubricated. Exceeding this limit can result in a permanent change in the bearing size due to metallurgical changes of the steel and thermal expansion. Both of these conditions can cause loss or reduction of the radial internal clearances, which can generate excessive temperatures and reduced life. At excessive temperatures, hastened by rapid oxidation of the

lubricant, softening of the steel will lower the bearing fatigue limit and shorten the bearing life.

BEARING TEMPERATURE

Factors that influence the bearing temperature include:

- 1. Winding temperature
- 2. Lubricant temperature
- 3. Motor thermal circuit (cooling path and method)
- 4. Oil and grease viscosity
- 5. Bearing seals, shields and lubricant type
- 6. The amount of grease in the bearing and cavity
- 7. Radial internal clearance
- 8. Ambient conditions, including contamination
- 9. Bearing load and speed
- 10. Bearing type and size

LUBRICATION OF ROLLING BEARINGS

Proper lubrication of rolling bearings is critical for their successful performance. The major functions of the lubricant includes:

- 1. Providing a lubricant film for the various sliding and rolling contacts existing between the bearing elements.
- 2. Protecting the surface finish of the raceways and rolling elements from corrosion and rust.
- 3. Sealing the bearing from foreign materials.
- 4. Assisting in heat dissipation out of the bearing elements.

Grease lubrication is the method most commonly used on small- and medium-size electric motors in the range of 1 to 500 hp (1 to 375 kW) for horizontal machines. Sleeve bearings may be used in larger horsepower or 2-pole or high-speed applications. Vertical pump motors start to use oil-lubricated bearings at about 50 hp (35 kW). Neither application is covered in this article. The lubricant used for grease applications is usually a mixture of oil impregnated into a soap base. The soap base keeps the oil in suspension until it is removed by the moving members of the bearing and adheres to the surfaces. It is obvious that the supply of oil is depleted with time, as it gradually breaks down by oxidation. This process is a function of time, temperature, speed, load and environment.

Selection of the proper grease and its relubrication practices are critical for optimum bearing life.

Greases are usually made of a combination of soap or non-soap thickening materials mixed with mineral oil and additives. Soaps such as sodium, calcium, aluminum, lithium and barium are most commonly used. Polyurea is a synthetic organic thickener that has been widely used for electric motor bearings due to its elevated temperature properties. Polyurea is usually suitable for operating at temperatures in excess of 248°F (120°C), assuming the bearing material and clearance are sized properly. Rust and oxidation inhibitors and tackiness additives are included to enhance performance.

Present research is making it possible to predict bearing life more accurately. The use of Elasto Hydrodynamic Lubrication theory (EHL), introduced in the 1960s for calculating film thickness and pressure profiles, has been the key to many investigations and the base for understanding failure modes.

Since the early 1970s, lubrication and film thickness have been recognized as a significant factor in the life equations. The AFBMA Std. 9/ANSI B3.15 and ISO 281 standards were modified in 1972 and 1977, respectively, to include this effect by the addition of the a2(material) and a3(operating conditions) life adjustment factors [2]. Typical factors that have been used are shown in Figure 8-28. The latest efforts have been in the area of particle contamination and lubricant cleanliness. These new studies are tending to reshape the life prediction equations. According to one bearing manufacturer [3], the true nature of the failure mode mechanism was hidden and not understood until recently for the following reasons:

- 1. The high loads used to accelerate testing resulted in insufficient time for wear to manifest itself.
- 2. Surface initiated cracks from particle indentation that penetrated into deeper areas of high stress and culminate in flaking could not be distinguished from flaking caused by cracks formed below the surface.

Life adjustment factor vs. contamination load factor based on a SKF factor.

Based on these latest studies [4], bearing life theory has been further refined to use a family of curves to establish an adjustment factor to the unmodified life. Of primary importance is the "n" factor used to correct for contamination. An accurate assessment of the "n" factor requires an analysis on a computer with accurate knowledge of the application. Figure 8-29 is typical of the curves used to determine the life adjustment factor for contamination. These refinements along with similar actions taken by other manufacturers commonly lead to a more precise determination of bearing life.

In addition to new life prediction theories, new lubricants and lubrication methods are being devised which will extend the operating life. Synthetic greases are capable of extending grease life significantly as indicated by the oxidation characteristics depicted in Figure 8-30. Although grease life is a function of more than just oxidation life, it is a good indicator of the type of gain that can be made using synthetic grease. Synthetic greases can be formulated with a lower sensitivity to temperature variations and therefore have a larger useful temperature range and the potential for lower losses.

The question frequently asked about greases deals with the compatibility of them if mixed during the relubrication process. Table 8-5 is a guideline to assist in this process. It shows the results of grease compatibility tests performed by the National Grease Lubrication Institute (NLGL). [5] If in doubt, do not mix without checking with the lubricant manufacturer. For example, even though Polyurea Shear Stable and Polyurea Conventional have generally compatible thickeners and perform comparably (i.e., have similar dropping points, viscosities and oxidation resistance), they may contain different, incompatible additives–something the compatibility chart does not cover [6].

MOTOR BEARING LUBRICATION PRECAUTIONS

- 1. All motor housings, shafts, seals and relubrication paths must be kept thoroughly clean throughout the motor's life.
- 2. Avoid any dirt, moisture, chips or foreign matter contaminating the grease.

TABLE 8-5: GREASE COMPATIBILITY CHART

B = Borderline C = Compatible I = Incompatible	Al c m p l e x	Ba o m p I e x	Ca s t e a r a t e	Ca 12 h y d r o x y	Ca o m p I e x	Ca s u f o n a t e	Clay nonsoap	Li s t e a r a t e	Li 12 h y d r o x y	Li c m p l e x	Polyurea	Polyurea SS
	1	2	3	4	5	6	7	8	9	10	11	12
1. Aluminum complex				С		В	Ι			С	Ι	С
2. Barium complex	Ι			С	Ι	С	Ι	Ι	Ι	Ι	Ι	В
3. Calcium stearate	Ι	Ι		С	Ι	С	С	С	В	С	Ι	С
4. Calcium 12 hydroxy	С	С	С		В	В	С	С	С	С	Ι	С
5. Calcium complex	Ι	1	I	В		Ι	Ι	Ι	Ι	С	С	С
6. Calcium sulfonate	В	С	С	В	Ι		Ι	В	В	С	Ι	С
7. Clay non-soap	Ι	Ι	С	С	Ι	Ι		Ι	Ι	Ι	Ι	В
8. Lithium stearate	I	1	С	С	Ι	В	Ι		С	С	Ι	С
9. Lithium 12 hydroxy	I	Ι	В	С	Ι	В	Ι	С		С	Ι	С
10. Lithium complex	С	I	С	С	С	С	Ι	С	С		Ι	С
11. Polyurea conventional	I	1	I	Ι	С	Ι	I	I	I	Ι		С
12. Polyurea shear stable	С	В	С	С	С	С	В	С	С	С	С	
This information is to be used only as a guide. Consult the manufacturer of each product before mixing different greases.												

- 3. Identify the temperature range for the application and select a grease that will perform satisfactorily.
- 4. Over greasing may cause elevated bearing and/or winding temperatures, which can lead to premature failures. Be sure to properly purge excess grease.
- 5. When regreasing, be sure that the new grease is compatible with the existing grease and that it has the desired performance characteristics.
- 6. Be aware that synthetic grease may not be as suitable as petroleum greases in high-speed applications. Some applications may require an extreme pressure (EP) grease.
- 7. Be aware that some common greases are not desirable for motor applications. If they are too soft, whipping can occur. If too stiff, noise and poor bleeding characteristics can occur.

CAUSE OF FAILURE

The most common causes of bearing failures are:

- 1. Thermal overloads
- 2. Inadequate or excessive lubrication
- 3. Contamination
- 4. Excessive loading (axial/radial combined)
- 5. Vibration
- 6. Misalignment
- 7. Improper shaft and housing fits
- 8. Machinery defects

- 9. Shaft-to-ground currents
- 10. Incorrect handling or mounting
- 11. Load life and fatigue factors
- 12. Improper application
- 13. Damage during transportation or storage

The challenge is to learn how to identify each type of failure with a high level of certainty and repeatability.

METHODOLOGY OF ANALYSIS

Five key areas that should be considered and related to one another in order to accurately diagnose the root cause of bearing failures are:

- 1. Failure mode
- 2. Failure patterns
- 3. Appearance of motor and bearings
- 4. Application data
- 5. Maintenance history

Brief discussions of each of these areas follow.

Failure mode

The failure modes can be grouped into the following 12 categories which are usually the result of the combined stresses acting on the bearing to the point of damage or failure. This is arbitrarily referred to as the failure mode.

- 1. Fatigue spalling, flaking
- 2. Fretting
- 3. Smearing
- 4. Skidding
- 5. Scoring
- 6. Abrasive, abnormal wear
- 7. Corrosion
- 8. Lubrication failure
- 9. True or false brinelling
- 10. Electric pitting or fluting
- 11. Cracks
- 12. Seizures

These modes do not represent the cause of the bearing problem; instead, they are the result or way that the problem is manifested.

Bearing failure patterns

Each bearing failure has a certain pattern that is closely associated with, yet different from, the failure mode. These patterns can be grouped into some combination of these categories:

- 1. Temperature levels (discoloration)
- 2. Noise levels
- 3. Vibration levels
- 4. Lubrication quality
- 5. Condition of mounting fits
- 6. Internal clearances
- 7. Contamination
- 8. Mechanical or electrical damage
- 9. Load paths and patterns (alignment)

Appearance of motor and bearings

When coupled with the mode and pattern of failure, the motor bearings and load appearance usually give a clue as to the possible cause of failure. The following checklist will be useful in the evaluation:

- 1. Are there signs of contamination in the area of the bearings? Any recent welding?
- 2. Are there signs of excessive temperature anywhere in the motor or driven equipment?
- 3. What is the quality of the bearing lubricant?
- 4. Are there signs of moisture or rust?
- 5. What is the condition of the coupling device used to connect the motor and the load?
- 6. What noise or vibration levels were present prior to failure?
- 7. Are there any missing parts on the rotating member?
- 8. What is the condition of the bearing bore, shaft journal, seals, shaft extension and bearing cap?
- 9. What was the direction of rotation, overhung load and axial thrust? Are they supported by the bearing wear patterns?
- 10. Does the outer or inner face show signs of fretting?
- 11. Is the motor mounted, aligned and coupled correctly?

Do not destroy the failed bearing until it has been properly inspected. It is also important to save a sample of the bearing lubricant.

Application data

It usually is difficult to reconstruct the actual operating conditions at the time of failure. However, knowledge of the general operating conditions will be helpful. The following items should be considered:

- 1. What are the load characteristics of the driven equipment and the loading at time of failure?
- 2. Does the load cycle or pulsate?
- 3. How many other units are successfully operating?
- 4. How often is the unit started?
- 5. What type of bearing protection is provided?
- 6. Where is the unit located, and what are the normal environmental conditions?
- 7. Is the motor enclosure adequate for the application?
- 8. What were the environmental conditions at time of failure?
- 9. Is the mounting base correct for proper support to the motor?
- 10. Is the belting or method of connection to the load correct for the application?

Maintenance history

An understanding of the past performance of the motor can give a good indication as to the cause of the problem. Again, a checklist may be helpful.

- 1. How long has the motor been in service?
- 2. Have any other motor failures been recorded, and what was the nature of the failures?
- 3. What failures of the driven equipment have occurred? Was any welding done?

- 4. When was the last time any service or maintenance was performed?
- 5. What operating levels (temperature, vibration, noise, etc.) were observed prior to the failure? What tripped the motor off the line?
- 6. What comments were received from the equipment operator regarding the failure or past failures?
- 7. How long was the unit in storage or sitting idle prior to starting?
- 8. What were the storage conditions?
- 9. How often is the unit started? Were there shutdowns?
- 10. Were correct lubrication procedures utilized?
- 11. Have any changes been made to surrounding equipment?
- 12. What procedures were used in adjusting belt tensions?
- 13. Are the pulleys positioned on the shaft correctly and as close to the motor bearing as possible?

SUMMARY AND CONCLUSIONS

There are numerous ways to go about failure analysis. The procedure proposed here is a simple one that can be easily taught and communicated to employees with a wide range of skills and backgrounds. Usually this type of analysis will quickly eliminate factors that are not contributing to the failure. When the problem is reduced to the one or two most likely culprits, thoughtful analysis will usually lead to the correct conclusion. It is not one's brilliance that leads to the truth; instead, it is the ability to sort that which is important from among all of the unrelated data available.

APPENDIX I: BEARING PROTECTION

Increased bearing operating temperatures, vibration or noise levels may indicate impending problems or failure. It may be desirable to measure these variables on routinely or continuously. If the equipment is part of the motor, it may have gages, meters, alarms or shutdown features.

The following is a brief discussion of the methods commonly used to provide this protection.

Bearing temperature protection

Table 8-6 provides a general guide for bearing temperature limits.

TABLE 8-6:	BEARING	TEMPERATURE	LIMITS
-------------------	---------	-------------	--------

	Lubricar	Lubricants							
	Standard	Synthetic							
Normal	176°F (80°C) or lower	230°F (110°C)							
Alarm	194°F (90°C)	248°F (120°C)							
Shutdown	212°F (100°C)	266°F (130°C)							

Specific applications may require slightly different limits. For most applications, actual temperatures will usually be lower than those above. For maximum protection, the user should determine the "normal" bearing operating temperature for the application and adjust the "alarm" setpoint 18°F (10°C)

higher. (Do not exceed the "critical" temperature indicated above, except in extreme emergency).

The detectors are normally mounted with the temperature-sensitive probe in contact with the bearing outer race for grease- or oil-lubricated bearings. Where capillary bulb detectors are used, the bulb is placed in oil in contact with or close proximity to the bearing race. The probe is in contact with the bearing shell for Kingsbury plate and sleeve bearings.

Detector type	Alarm	Shutdown	Temp. reading	Operate auxiliary equipment						
Switch	Yes	Yes (1)	No	Yes						
Indicator & switch	Yes	Yes (1)	Yes	Yes						
Thermometer	No	No	Yes	No						
RTD	Yes (2)	Yes (1, 2)	Yes (2)	Yes (2)						
Thermocouple	Yes (2)	Yes (1, 2)	Yes (2)	Yes (2)						
Thermistor	Yes	Yes (1)	Yes (2)	Yes (2)						
(1) Requires connection to motor control relay.(2) Requires auxiliary controller not normally supplied with motor										

TABLE 8-7: BEARING TEMPERATURE DETECTION DEVICES

Selection of a particular type of equipment for indicating and monitoring the temperature of bearings depends upon the function the device is to perform. Table 8-7 summarizes some of the most commonly used devices.

Motor vibration

The vibration limits for electric motors are usually expressed in displacement or velocity levels, and on some

NEMA Stds. MG 1 unfiltered vibration levels-mechanical vibration.

occasions acceleration levels are used. Figure 8-31 indicates the levels established by NEMA Stds. MG 1, Part 7, for new machines unloaded.

Numerous devices are available to measure vibration levels (either mechanically or electronically), some of which have shutdown capabilities. The size, application and location are factors in determining the best approach to monitor and protect the motor.

The mechanical vibration for medium horsepower alternating current and direct current machines built in a 42 and larger frame, when measured in accordance with NEMA Stds. MG 1, Part 7, shall not exceed a peak vibration velocity of 0.15 inches per second (3.8 mm/s).

Noise and fault analysis

There are methods of analyzing acoustic emissions of ultra-high frequency bearing noise that may not be audible to the human ear. These methods generally measure bearing damage to the balls and raceways, such as spalling and pitting. They are usually employed as part of a predictive maintenance program. Some of the keys to success with these methods are proper selection of the time intervals between testing, location and measurement methods. Properly done, these methods can detect a flaw before any detectable change in vibration or temperature occurs.

There are several other methods available for bearing fault detection, such as acoustic emission, stress wave energy, fiber optics, outer race deflection, spectrum analysis, and lube oil analysis. Some of them can, if done properly, detect faults at very early stages. For more detailed information, see citation 7 in the Reference section.

Unusual failures

Cage instability

Cage instability is manifested by the emitted audible noise, usually in the form of squeals or groans. Unstable cages usually cause intermittent torque transients. The wear pattern from these torques may be seen as a circumferential wear pattern inside the rolling element.

J.W. Kannel and S.S. Bupara offer the following observations on cage instability:

- 1. The conditions for stable cage motions can be enhanced by reducing the ball-cage co-efficient of friction as much as possible.
- Stable cage motion is critically dependent on the extent of lubrication at the ball-race contact and, hence, on the quality of lubrication present in the bearing.
- 3. Instabilities in cage motion may occur if the viscosity of the lubricant is too high.
- 4. Unstable cage motions can occur in either a ball-guided or a race-guided cage.

"It has been postulated that unstable cage motions can arise as a result of interactions between an unconstrained cage (i.e., free to move within the constraints imposed by the internal clearances) and the rolling elements in the bearing. Energy is supplied to the cage by the frictional force generated at the ball-cage contacts. The motions of the cage can be stabilized if the cage becomes constrained (e.g., by uneven ball spacings, uneven loads, etc.) or if it dissipates a sufficient portion of its energy at the ball-race interfaces during ball impacts."[8]

Shaft currents

During the past few years, a significant increase in problems associated with shaft voltages and currents has been observed. In many cases, these currents have caused bearing failures, which are identified as fluting or pitting types of failures. There are at least three known causes for the phenomena:

- 1. Electromagnetic dissymmetry, which is usually inherent in the design and manufacture of the motor.
- 2. Electrostatic charges (associated with friction) accumulated on the rotor assembly. Shaft couplings and air passage are also known causes.
- 3. Electrostatic coupling caused by extreme power supplies such as PWM inverters.

Other abnormalities in sinewave power supply associated with grounding, unbalances, harmonic content and high common mode voltages may also result in induced shaft voltages.

In the case of motors used in conjunction with PWM inverters, it is theorized that the terminal motor voltage supplied by the drive is not balanced or symmetrical in some aspect.

Another possible source of this problem is electrostatic coupling, which induces a voltage into the shaft large enough to cause currents that damage the bearings. The high dv/dts associated with the GTO and IGBT transistors are the major source of this problem. The amount of load, rotor speed, method of coupling and type of bearing lubricant can each aggravate the situation. In some cases, insulated bearings may not solve this type of problem.

Regardless of the cause of the induced shaft voltage, if its value exceeds 0.3 to 0.5 VRMS sinewave, it may produce currents large enough to permanently damage the bearings. This problem has heretofore been limited to larger motors, usually 500 frame and up [where the stator outside lamination diameter exceeds 20" (50 cm)]. In most cases, the current passes through both bearings. This condition can be corrected by insulating the outboard bearing on horizontal motors or top bearing on vertical motors.

This approach is usually not practical on smaller motors, where it is now starting to appear when a PWM inverter with IBGTs is used.

Figure 8-37 (top photo) shows a typical bearing when fluting has occurred. Depending upon the amount of running time on the bearing, the raceways may show signs of straight frosting all the way to spalling. Figure 13 (bottom photo) shows pitting caused by electrical currents.

See Appendix II for a summary of the various methods that are being used to eliminate bearing currents.

New technologies

One of the newer lubrication schemes is the oil-air method. that was developed for high-speed spindles where temperature rise was to be kept to a minimum. It is used in place of grease, jet, and oil mist and requires the least amount of lubricant.¹⁰ Oil-air lubrication consists of supplying 0.01-0.06 ml. of oil per fixed time unit by compressed air to the bearing. It is growing in popularity because it is more stable and requires less oil than the oil-mist method and has a maximum speed limit that is considerably higher than grease. Above this limit, jet lubrication is used to minimize temperature rise and carry heat generated away from the bearing. Jet lubrication requires about 3-4 liters/minute of lubricant per bearing.

Ceramic balls are the state of the art for boosting speed and lowering losses. They weigh approximately 60% less than steel balls, which significantly reduces the centrifugal force. This alters the bearing loss characteristics, resulting in lower losses and decreased temperature rise. Ceramic bearing parts are also corrosion resistant, have a higher temperature range, higher hardness (78 Rockwell C), and higher stiffness.[9]

APPENDIX II: METHODS OF REDUCING BEARING CURRENTS IN MOTORS OPERATED ON PWM DRIVES

An estimated 25 percent of all bearing failures on PWM applications are dv/dt- and carrier-frequency related, according to Thomas Lipo, Ph.D., of the University of Wisconsin. The following briefly summarizes the various methods that are being used or investigated to reduce or eliminate damaging bearing currents on AC industrial motors operated on low-voltage PWM drivers:

1. Insulate shaft bearing journals

One or both ends; very effective on larger motors above 200 hp (250 kW).

2. Insulate bracket bore to bearing OD fit

One or both ends; use on vertical and horizontal motors; not as durable as shaft insulation at journal.

3. Use bearing with insulated ID or OD

Ceramic coated bearings are not always effective because the effectiveness of the thin ceramic coating decreases as drive carrier frequency increases.

- 4. Hybrid bearings (ceramic rolling elements)
- Grounding brush between shaft and ground Subject to contamination problems and expensive, but it does work in many cases. When both bearings are insulated, a shaft grounding device should be installed.
- 6. Install inductive absorbers

Placing properly sized inductive components over cables between the motor and drive can create a common mode choke.

7. Clean up the VFD output waveform

Best overall solution and could include single output reactors, limit filters, or motor terminators; can be expensive.

- 8. Reduce drive switching frequency to less than 5 kHz Will cause some noise and loss of efficiency.
- 9. Reduce or eliminate common-mode voltage

Under investigation; can be done by use of filters and reactors.

- 10. Improve grounding techniques
 - A dedicated low-impedance cable between motor and drive per drive manufacturer's instructions.

- Optimize grounding location; eliminate floating grounds.
- Proper cable termination-use of current connectors.

11. Other options

- Resonant link, zero switching in development stage; high cost.
- Switched reluctance driver with slower waveforms; not yet ready.
- Mechanical driver or gear; a step backward!

Note: Some of the above may be used in combination, such as insulated bearings and shaft-grounding brushes.

The motor manufacturers have done a good job of addressing the increased insulation stress on the winding and also offer insulated bearings on larger motors. However, there is no single, clear-cut solution that is economically feasible for 1-200 hp (1-250 kW) motors. When asked for recommended solutions on their smaller motors, the first choice is usually output filters at the drive; this seems to give the best results to date.

REFERENCES

- [1] O.V. Thorsen and M. Dalva, "A Survey of Faults on Induction Motors...," *IEEE Transactions on Industrial Applications*, Vol. 31, No. 5, 1995.
- [2] New Life Handbook, SKF Catalog 140-410, June 1989.
- [3] "Research–A Basis for Products of the Future," FAG Kugelfishcer Georg Schafer AG, Pub. No. WL 40 205 EA.
- [4] J. Goodall Wuttkowski and E. Loannides, "The Effect of Contaminants on Bearing Life," SKF Bearing Industries.
- [5] *NLGL Spokesman*, National Lubricating Grease Institute, April 1983.
- [6] ASTM D6185-97(2008) Standard Practice for Evaluating Compatibility of Binary Mixtures.
- [7] J. Charles Berggen, "Diagnosing Faults in Rolling Element Bearings, Part II: Alternative Analytical Methods," *Vibrations*, Vol. 4, No. 2, June 1998.
- [8] J.W. Kannel and S.S. Bupara, "A Simplified Model of Cage Motion in Angular Contact Bearings Operating in the EHD Lubrication Regime," American Society of Lubrication Engineers and American Mechanical Engineers Joint Lubrication Conference, Kansas City, MO, Oct. 1977.
- [9] "Bearing Failure Analysis & Preventive Maintenance," NSK.

OTHER RESOURCES

- Bonnett, A.H. "The Cause of Winding Failures in Three-Phase Squirrel Cage Induction Motors." PCI-76-7.
- Bonnett, A.H. "Analysis of Winding Failures in Three-Phase Squirrel Cage Induction Motors." PCI-77-4.
- Bonnett, A.H. "Prevention of Winding Failures in Three-Phase Squirrel Cage Induction Motors." PCI-78-7.
- Bonnett, A.H., and G.C. Soukup. "Rotor Failures in Squirrel Cage Induction Motors," PCI C85-24, IAS IA, Vol. 2, 1986.
- Bonnett, A.H., and G.C. Soukup. "Analysis of Rotor Failures in Squirrel Cage Induction Motors." PCI 87, CH 2495-0/87.

- "Bearing Failures and Their Causes." SKF Catalog, PI401E, 1994.
- Note: This article was excerpted from *EASA Tech Note 27* (April 1999). It was reviewed and updated as necessary in October 2018.

REFERENCE LIBRARY

One of the best tools for analyzing bearing failures is a reference library of pictures of known causes of bearing failures. The following is a sample of some of the more typical types of failure.

Defective fits/seats (Figure 8-32)

- Loss of internal clearance
- Loose fits
- Skidding
- Creep
- Fretting corrosion

Fatigue failures (Figure 8-33)

- Incipient
- Advanced
- Extreme

Mechanical (Figure 8-34)

- Mounting
- Parasite thrust
- False brinelling
- True brinelling
- Fluting from rotational vibration

Contamination (Figure 8-35)

- Chips in raceway
- Damaged/faulty seals
- Abrasion

Excessive temperature (Figure 8-36)

Shaft Currents (Figure 8-37)

- Pitting
- Fluting
- Welding

Misalignment

- Load paths
- Out-of-round
- Skewed paths
- Edge loading
- Smearing

Improper Iubrication

Overspeeding

Bearings

The following photographs illustrate some of the more common bearing failures listed above.

FIGURE 8-32: DEFECTIVE FITS/SEATS

Fretting corrosion caused by loose fit and vibration.

FIGURE 8-33: FATIGUE

Early stage of spalling caused by excessive preload.

Advanced stages of spalling.

Fatigue fracture of outer ring caused by burrs in the housing bore.

FIGURE 8-34: MECHANICAL

False brinelling and fretting caused by vibration in a nonoperating condition.

False brinelling and fretting caused by vibration in a nonoperating condition.

Thrust on low shoulder of angular contact bearing caused by improper installation.

Excessive thrust on a spherical roller bearing.

FIGURE 8-35: CONTAMINATION

Smear marks on roller caused by debris.

Metallic contamination in raceway.

Damaged caused by water intrusion.

FIGURE 8-36: TEMPERATURE

Color variation due to excess temperature.

FIGURE 8-37: SHAFT CURRENTS

Pitting caused by electrical currents.

Fluting caused by internally generated current.

8.10 BEARING REPAIR AND END PLAY ADJUSTMENT

Repairing sleeve bearings

By Chuck Yung, EASA Senior Technical Support Specialist

Sleeve bearings have been used in almost all sizes of electric motors since motors were invented. Although most motors now have ball bearings for economic reasons, sleeve bearings are still used in fractional horsepower motors, as well as in large motors where the desired bearing life cannot be achieved with rolling-element bearings. The limiting factors in larger motors are the diameter of the bearing and the speed of its rolling element. Sleeve bearings do not work well with radial loads or belted applications. This article focuses on large motor designs (500 to 5000 hp/375 to 3750 kW). Pedestal bearings are not specifically treated, although many of the principles are the same.

In this age of specialization, sleeve bearing repair has largely become an industry niche. Due to economies of scale, many service centers now outsource this work, a trend that has resulted in a general loss of knowledge and associated skills in this area.

PRINCIPLES OF SLEEVE BEARINGS

Sleeve bearings are deceptively simple in appearance (Figure 8-38). Made of soft metal called babbitt (an alloy made mostly of tin and lead; see Table 8-8), they conform to the shape of the shaft and support the load. A film of oil continuously lubricates the bearing and shaft, minimizing surface wear while efficiently cooling the parts. Foreign matter that gets between the bearing and the shaft becomes embedded in the soft babbitt material, thus protecting the harder (and more costly) shaft.

Clearance. Proper clearance between the shaft and bearing keeps the shaft position stable. Too little clearance results in excessive heat due to friction between the shaft and bearing. Too much clearance can lead to unwanted movement (vibration or loss of concentric orbit).

One rule of thumb for bearing-shaft clearance is .001" + .001" per inch (.025 + .010 mm/cm) of shaft diameter. Factors such as rotational speed, bearing diameter/length ratio,

FIGURE 8-38

Typical sleeve bearing arrangement, with the top half of the bearing removed for inspection. Note the separable oil ring that can be removed without further disassembly.

oil viscosity and load also each play a role in determining the optimal clearance for a particular bearing.

Lubrication. The key to sleeve bearing life is adequate lubrication to maintain minimum friction. A continuous flow of oil is provided by one or more oil rings or a forced-oil system. Oil is delivered to the top of the shaft where it fills the oil distribution groove (Figure 2). As the shaft rotates, the oil rings (resting on the shaft) also turn, lifting oil from the sump and transferring it to the bearing and shaft. The oil exits the drain groove at either end and is cooled by recirculating with oil in the reservoir/sump.

Some sleeve bearing designs incorporate guides or wipers that improve the transfer of oil from each ring to the shaft and

ASTM grade number	Tin %	Antimon %	Lead %	Copper %	Melting point °F (°C)	Pouring temperature °F (°C)
1	91	4.5	—	4.5	433 (223)	825 (440)
2	89	7.5	—	3.5	466 (241)	795 (424)
3	83	8.3	—	8.3	464 (240)	915 (490)
5	65	15	18	2	358 (181)	690 (365)
7	10	15	75	1.5	464 (240)	640 (337)

TABLE 8-8: BABBITT GRADES AND TEMPERATURES

While melting temperatures are reasonably close together, the correct pouring temperatures vary considerably among babbitt grades. Pouring at too low a temperature decreases the likelihood of a good bond between babbitt and shell.

FIGURE 8-39

The horizontal distribution groove is critical to bearing performance. The diagonal groove visible at the split line is a channel for forced oil systems. A forced oil system increases the volume of oil through the bearing, which acts to cool the bearing.

bearing. Guides also keep the rings tracking straight, which is especially important in high-speed machines. A ring that tracks erratically turns slower and moves less oil, thereby increasing bearing temperature. Oil rings must be round (within about .002" or .05 mm) in order to rotate at a consistent speed.

The oil distribution groove (Figure 8-39), sometimes called a fly-cut or side-pocket, holds in reserve a continuous supply of oil. This reserve provides sufficient static head pressure to maintain a constant oil film between the bearing and shaft. The end seal also helps maintain the pressure.

The size of the distribution groove can be critical, especially with 2-pole machines. If it is too small, it will not hold enough oil to maintain sufficient head pressure. A "patchy" looking babbitt surface and difficulty in obtaining a good wear pattern suggest overheating due to a distribution groove that is too small. The solution is to enlarge the groove.

(Note: Sleeve bearings should not be grease lubricated! Although grease-lubricated sleeve bearings can still be found on some very old designs, they do not work well and should be avoided.)

BABBITT GRADE

When examining a sleeve bearing, one of the first tasks is to determine which grade of babbitt was used. Babbitt grades are selected for specific applications, based on such factors as shaft surface speed, lubrication type and dynamic load. Other considerations include temperature and the ease with which dirt can be embedded (e.g., contaminants are much more prevalent in a cement mill than in a food processing plant).

Babbitt grades are classified according to the relative amounts of tin, antimony, lead and copper they contain (Table 8-8). ASTM alloy grades range from 1 to 19, although babbitt grades 1, 2 and 3 are the most frequently encountered. Tin is the major component of grades 1 through 5, whereas lead is the main ingredient in grades 6 through 19. Lead babbitt has a lower load-carrying capacity than tin babbitt, and is much less resistant to corrosion.

In general, tin-based babbitt bearings for electric motors have load-carrying capacities of 800 to 1500 psi (5500 to 10300 kPa). Lead-based babbitt bearings have capacities of 800 to 1200 psi (5500 to 8270 kPa). The babbitt used for a lightweight, high-rpm induction motor will differ from that used in a large, low-speed synchronous ball-mill motor.

Some service centers find it convenient to use the same grade of babbitt for all bearings. Companies specializing in babbitt bearing repair are more likely to have the equipment and the babbitt inventory to duplicate the original babbitt grade. To confirm babbitt grade, have a sample analyzed by a lab or contact the OEM for the original grade.

COMMON CAUSES AND REMEDIES FOR SLEEVE BEARING FAILURE

Babbitt bearing failures ultimately result from heat. Some of the more common contributing causes and remedies are given below.

Contamination. Methods for controlling contamination– dirt or product in the oil–vary from frequent oil changes, to monitoring oil condition (tribology), to testing for corrosive material in the atmosphere. Installations where acids are present will require more frequent monitoring than "clean" installations. In some cases, special seals may be effective in excluding airborne contaminants. This is helpful with smallparticle abrasive dusts, which are difficult to exclude using conventional labyrinth seals.

Shaft currents. A sleeve bearing can withstand higher shaft currents than a ball bearing, but shaft currents may still be a source of trouble. The magnetic dissymmetry often responsible for these currents is more common in large machines with segmented laminations. These larger machines are also more likely to have sleeve bearings.

Because sleeve bearings have larger surface areas than ball bearings, they can withstand higher voltages before damage occurs. Shaft voltages in excess of 100 millivolts are a concern for ball bearings, whereas they become problematic for sleeve bearings above 200 millivolts. The application of VFDs may cause significantly higher shaft voltages (10 to 25 volts), resulting in rapid bearing damage.

Even when a bearing is properly insulated, problems can occur. For example, conductive contaminants such as coal dust or carbon black may build up in the oil, effectively bypassing the bearing insulation. Water may cause rust, which can also bypass the insulation. This is especially true of porous insulating materials such as micarta. Porous insulating materials can be protected using spray-on electrical insulating varnishes that help seal the surface of the material.

Several manufacturers use an aluminum oxide spraypowder to insulate the bearing shell. This provides a fairly durable insulation but makes rebabbitting difficult. The thin coating is easily chipped by improper handling, and rust caused by exposure to water can compromise its insulating properties. The coating can be resealed using clear aerosol spray insulation. Care should be taken to dry the bearing first, to avoid sealing moisture in.

Insulating a bearing shell generally adds about 10° F (6°C) to its operating temperature. If bearing temperature is already high, it may be prudent to consider adding a forced lubrication system.

An alternate method (used by one manufacturer) is to apply a ceramic coating directly on the shaft journal to insulate the bearing-to-shaft path. The ceramic coating, which is then precision-ground to obtain the desired size and surface finish, has the added benefit of reducing friction and corrosion.

Some larger machines have an insulated bearing pedestal, rather than an insulated bearing shell. This is usually accomplished with a sheet of phenolic material. Bolts and dowel pins must also be insulated. When evaluating whether to insulate the pedestal or the bearing, be sure to consider rotor weight, surface area and compressive strength of the insulating material. Insulating the pedestal base offers one important advantage for large applications: it distributes the weight over a larger surface area.

Additional concerns regarding shaft currents include:

- Conductive paint and grounding cables installed improperly by well-meaning plant personnel.
- Oil that goes unchanged for very long periods of time. Brass particles worn from the oil rings may make the oil conductive.
- For bearings insulated with an oxide-coated shell, the oilring slots should be inspected for overspray. As the rings rotate, the abrasive action of the oversprayed material will quickly wear down oil rings.

If installed incorrectly, temperature sensors, forcelubrication piping or other hardware can also bypass bearing insulation. This can be difficult to detect, since these items are often removed and left on-site when a motor is removed for repair. The service center may do everything right, yet the bearing fails in a short time–with evidence of shaft currents.

To verify the integrity of an insulated bearing, use a piece of insulation material (such as mylar) to isolate the non-insulated end. Lift the shaft and place the insulation between the shaft and bearing. (It is sometimes more convenient to place the insulation between the shaft and labyrinth seal with the bearing removed.) Next, use an ohmmeter or megohmmeter to verify that there is no continuity between the shaft and bearing of the insulated end. One megohm is adequate resistance.

Oil level. If oil level information is available from the manufacturer, follow it. If not, as a general guideline, fill the reservoir to a level that immerses approximately a quarter of the oil ring circumference, or about a fifth of its diameter (Figure 8-40). Too low a stationary oil level means it will be dangerously low when some oil is in play (in the bearing, dripping down the inside of the chamber, etc.). Too high an oil level increases friction between oil and rings, so the rings will turn slower, supplying less oil to the bearing.

Under-lubrication. This problem may result from oil splashing (missing ring guides, for instance), excess labyrinth seal clearance (oil migrates from the chamber), or a pressure differential between the outside air and the interior of the

Oil level should adhere to the manufacturer's recommendations, when available. The rule of thumb is that the bottom of the oil rings should be immersed to approximately one-quarter of their circumference, or about one-fifth of their diameter.

FIGURE 8-41

Several schemes have been used for venting the bearing chamber or inboard labyrinth seal to keep pressure (or vacuum) from developing in the oil chamber. This chamber is vented to the air baffle.

bearing chamber (see Figure 8-41). Blocked vents can create a vacuum or positive pressure within the bearing chamber, causing oil to be carried out of the chamber by the passage of air. Force-feed lubrication systems may be "adjusted" to the point that problems arise.

Over-lubrication. This can be as much of a problem as under-lubrication. On forced-oil systems, for example, the orifice that meters the oil supply for each bearing (Figure 8-42) often gets lost or is intentionally removed. Orifice size and system pressure determine the correct oil supply, so a missing orifice usually results in the delivery of too much oil to the bearings (even if the pressure gauge shows the proper reading). The orifice is contained within the plumbing (on the pressure side of the oil supply) or in the motor end bracket, so it is difficult to check while the motor is in service.

FIGURE 8-42

The spherical (or "self-aligning") bearing gets its name from the shape of its outside diameter. It is not truly "selfaligning," so proper assembly procedure is critical to its performance. Note the location of the oil-metering orifice on this spherical bearing.

To determine the oil volume supplied by a forced lubrication system, perform the following simple check. With the motor stopped and the forced lubrication system operating, open the drain line and measure the quantity of oil circulated in one minute (timed). Compare that amount to the OEM specifications. If the volume of oil is considerably more than that specified by the OEM, the orifice has probably been removed or modified. For a 3" to 6" (75 to 150 cm) shaft, the normal flow is 1/2 to 1 gpm (1.9 to 3.8 lpm).

Oil leaks. When an oil leak is suspected, use a manometer to measure the pressure differential between the inside of the bearing chamber and the motor enclosure. A significant difference can cause atomized oil to be carried past the seals in the air stream. Historically, this has been a problem with some 2-pole designs. Venting the inner labyrinth seal area behind the bearing chamber to the atmosphere is more effective than venting the bearing chamber, because air drawn into the motor can bypass the bearing chamber.

Several manufacturers' 2-pole designs use flexible hose to vent the inside labyrinth seal to the air baffle (Figure 8-41). The axial position of the fan on these designs, however, greatly affects the draft on the hose, resulting in chronic oil-loss problems. Venting the inner labyrinth seal to the atmosphere usually works better.

Oil viscosity. The oil viscosity can be very important, contributing to the stiffness of the shaft/bearing assembly. Some designs are prone to vibration problems if the wrong oil weight is used. Consult the OEM manual for specific information about recommended oils, especially if a vibration problem seems to defy logic. Sometimes an application limits the choice of viscosity. In the food industry, for example, the FDA requires the use of mineral oil to keep food safe.

Bearing-to-housing clearance. Although bearing-to-shaft clearance usually receives considerable attention (See "Sleeve bearing clearance depends on many factors" on Page 8-17.), bearing-to-housing clearance is often overlooked. The different coefficients of expansion for the steel shaft/brass shell/babbitt bearing/cast-iron housing make this clearance essential. If the bearing-to-housing fit has zero clearance, the bearing shell cannot expand outwards as it heats up. Thermal expansion will therefore cause the bearing to grow "in," reducing the bearing-to-shaft clearance. If the bearing-to-shaft clearance becomes too tight, the bearing will fail. Too much clearance between the bearing and housing will cause high vibration.

Most electric motor sleeve bearings perform best with housing clearances of 0.001" to 0.003" (.025 to .040 mm). This clearance may be determined by measuring the bearing OD and housing ID (using a micrometer), or by using Plastigage or similar products to gauge the clearance. One advantage of the Plastigage method is that it is more likely to reveal elliptical parts. It also gauges the clearance only in the actual fit area. This provides an accurate measurement of clearance for bearings supported by a narrow saddle.

Spherical bearing housings can be especially difficult to measure, making Plastigage more practical. When using Plastigage, it is important to clean any sealant from the flat fit between the bearing bracket and cap, and to fully torque the bolts to insure an accurate reading.

Spherical bearings are sometimes called self-aligning bearings (Figure 8-42). While this is true during assembly, the spherical bearing rarely changes position once the bearing housing is closed. It is essential to follow the correct procedure when assembling spherical bearings. First, install the bottom halves of both bearings. Next, lift the shaft slightly, first one end and then the other, allowing it to settle the bottom halves of bearings into position. Only then should the top halves of the bearings and housings be installed. Failure to observe this simple procedure will result in misaligned bearings.

Field repairs to correct loose bearing housings include shimming and lapping the split-line of the top half of the housing. It is relatively easy to correct excess looseness by adding shims between the top half of the bearing and the housing. An alternative repair is to machine the split-line of the top half of the housing. When a machine shop is not convenient, clamp emory cloth on a flat surface and stroke the top half split-line to remove material and achieve the desired clearance. It is essential to maintain a flat surface, so this is best done on a flat, machined work surface. **Note:** At least one manufacturer (now defunct) designed sleeve bearing housings with a loose fit, outfitting the top bracket with set screws which were adjusted to obtain the desired tightness. The same manufacturer also deliberately bored babbitt bearings off-center (the bore was not concentric to the OD), calling them "high-lift" bearings.

ALIGNMENT

Alignment is generally considered only when a motor or its driven equipment have been recently installed or changed. When a motor or pump has been changed, or when the base has been reworked, realignment is necessary.

Thermal expansion (or contraction) must be considered when aligning machinery. With some equipment, "cold" alignment must include a deliberate misalignment to correct for temperature differences between motor and driven equipment. Even the term "cold alignment" may be a misnomer. Consider cryogenic equipment, for example, where the operating temperature is considerably lower than ambient. In any event, final alignment must consider the operating temperature of both driver and driven equipment.

Simplification of laser alignment procedures makes it tempting to train less-experienced technicians to operate the equipment. In doing so, it is important to ensure that they understand alignment. Perfect "cold" (ambient) alignment is meaningless. Alignment at operating temperature is what counts.

Sleeve-bearing machines are particularly sensitive to misalignment. Severe misalignment is obvious when the points of contact on a sleeve bearing are at diagonally opposite corners of the bearing. Rotor speed is not the only consideration when determining required alignment accuracy. At any given speed, alignment becomes more critical as sleeve bearing length increases.

DETERMINING THE CAUSE OF FAILURE

Determining the cause of failure is critical if the goal is to correct the problem. Analysis of sleeve bearing failure requires knowledge of the motor's history. Has it experienced similar failures in the past? How often has the failure occurred? Is there any common mode to the failures? Repeated failure of the ODE bearing often indicates an alignment problem. Failure during certain seasons may be a symptom of foundation movement resulting from monsoon flooding, spring thaws or ground freezing as winter sets in. (See Figure 8-43 for examples of damage.)

Oil condition. Unfortunately, by the time a service center receives the motor, the babbitt may be a puddle in the bottom of the oil chamber. The condition of the oil, however, may be helpful in narrowing down the possible causes of failure. Mud in the oil chamber points to contamination as the probable cause of failure. A milky emulsion indicates water mixed with the oil. If the oil looks new, but the bearing is wiped out, someone has added oil before sending the motor in for evaluation. This may indicate that the oil level was low enough to motivate the responsible party to "cover his tail." Human nature doesn't make it any easier to determine cause of failure.

FIGURE 8-43

Wiping of sleeve bearing showing resolidified babbitt in the central circumferential oil groove.

Minor run in bottom of bearing subjected to a vertical load.

Wiping of babbitt thrust pad caused by successive starts under excessive load.

Shaft condition. Evidence of heavy wear on one thrust shoulder of a bearing (called thrusting) can be caused by improper axial placement during installation. It also may indicate a defective coupling or machine settling. Some couplings require lubrication, but safety guards make them difficult to access. A "frozen" coupling will not allow the rotor any axial movement.

Machine	Synchronous speed (rpm)	Minimum motor rotor end float	Maximum coupling end float*	
500 hp (400 kW) and below	1800 and below	0.25" (6.5 mm)	0.09" (2.3 mm)	
300 hp (250 kW) to 500 hp (400 kW) inclusive	3600 and 3000	0.50" (13 mm)	0.19" (4.8 mm)	
600 hp (500 kW) and higher	All speeds	0.50" (13 mm)	0.19" (4.8 mm)	
* Couplings with elastic axial centering forces are usually satisfactory with these precautions. NEMA Stds. MG 1, 20.29.2				

FIGURE 8-44

TABLE 8-9: END PLAY AND ROTOR FLOAT LIMITS FOR COUPLED SLEEVE BEARING HORIZONTAL MOTORS

Machine settling is a less-common cause of this type of wear. For machinery subject to long coast-down times, precise leveling of the shafts is critical. The use of thrust-limiting couplings is also essential to prevent thrust-shoulder contact.

The thrust shoulder of a sleeve bearing is not intended to carry sustained thrust loads. Its only purpose is to limit the axial movement of the shaft during start-up and coast-down. Evidence of wear on a thrust surface indicates a problem with the application, and steps should be taken to limit the coupling end float. See Table 8-9 and NEMA Stds. MG 1, 20.29.2 for limits.

Condition of labyrinth seals. The area of contact with the labyrinth seal may give further clues about the failure. Contact anywhere other than at the bottom may indicate misalignment. Dirty, oil-soaked windings are a good indication of an ongoing oil leak, caused by excessive clearance of the labyrinth seal or by a pressure-differential between the oil chamber and atmosphere. The longer the leak has been present, the more dirt will be found mixed into the oil. (This mud also restricts airflow through the windings, and the oil can damage insulation.)

Perhaps a vent has been inadvertently blocked, or "mud-daubing" insects have nested in the vent opening (not uncommon in cast-in vents, especially in warmer climates). It is important to inspect these areas before any parts are cleaned. Evidence lost may prevent correct interpretation of the failure.

Excess clearance of labyrinth seals can result from a bearing failure that permits the shaft to contact the seal. Typical diametrical clearance for the labyrinth seal of a sleeve bearing machine is 0.007" to 0.020" (.18 to .51 mm), depending on speed and shaft diameter.

(Note: Removable labyrinth seals should be sealed during assembly using Permatex, silicon or similar products. Non-hardening products are preferred to facilitate future disassembly.)

If the shaft has been repaired previously, one easily missed cause of oil leaks is the anti-migration groove machined in the shaft just inside the bearing chamber. Centrifugal force prevents oil from migrating past the labyrinth seal while the shaft is rotating. The groove should be just inboard of the labyrinth seal (Figure 8-44).

If the **oilers** are adjustable, verify that they are set to the correct oil level. Replacement oilers are sometimes installed and adjusted incorrectly. Automatic oilers are available in several styles. The relationship of oil level to piping entrance

differs considerably among them. It is not unusual to have to change the piping configuration when changing an oiler. An automatic oiler set too high will often cause an oil leak.

If one oiler is defective, it is advisable to change both in order to avoid confusion in setting or checking oil level. In one instance, an end-user changed the stand-tube oiler on one end of a low-speed 700 hp (940 kW) motor and then carefully set the oil level to the center of the tube on *each end* of the motor. Unfortunately, he didn't notice that one tube was 3" (7.6 cm) tall and the other was 8" (20 cm) tall, despite the OEM oil-level nameplate. The result? A new shaft, stator rewind and rotor rebar (with restacks of the rotor and stator), not to mention rebabbitting the bearing. The end-user wanted to save the cost of the OEM oiler; it backfired.

NEW AND REBUILT SLEEVE BEARINGS

Inspection. Inspection of new or rebuilt babbitt bearings should include nondestructive testing (NDT). Ultrasound inspection is the best way to evaluate the bond between bearing shell and babbitt. Some end users have adopted U.S. Naval specifications, which require 80% minimum bond for the load zone and 40% for the overall bearing. This is something of a judgement call, as the percent bond in the top half of a bearing is not as critical as in the load zone. Likewise, the percent bond for a 3600 rpm machine is more critical than for a very low-speed application. Common problems affecting the bond are: presence of oil in the bearing shell (or in the material used to seal openings in the shell), failure to tin the shell before

FIGURE 8-45

Bearing chamber and components.

rebabbitting, or pouring the babbitt at the wrong temperature (see Table 8-8).

Fitting. Fitting a new sleeve bearing is an important part of the assembly process. Install the bottom half of each bearing and then spin the rotor with the bearing journal dry (or with a small amount of oil wiped onto the journal) to establish a wear pattern quickly. Thrust the shaft axially several times while it rotates. Scraping of high spots is generally done using a babbitt knife or bearing scraper, followed by polishing with a Scotchbrite pad.

The bearing should be thoroughly cleaned after each fitting before being rolled back in for further fitting. The objective is a minimum of 60% contact centered in the bottom half, with no contact at the corners or top.

As a practical matter, most technicians concentrate on the bottom half. Then they install the bearing top half and securely bolt the top cap in place to retain it for a final spinand-inspection. This allows them to verify that no pinch-points exist. Too tight a bearing-to-housing fit may distort the bearing shell and cause bearing-to-shaft contact that was not evident during the initial fitting process. When the shaft centerline is not perpendicular to the stator-bracket fit, the top bracket half may further alter the bearing-to-shaft alignment.

Start-up. Test-running a motor with a newly-fitted bearing requires some caution, because actual contact between the bearing and shaft will result in rapid heating. A high spot on the babbitt bearing surface will interrupt the oil film on which the shaft rides. The resulting friction will produce heat that can damage the bearing.

Two-pole machines require special care on start-up, because of the higher surface speeds. When test running a low-speed machine, the technician can detect a rapid increase in bearing temperature and stop the machine before damage occurs. With a 2-pole machine, cause and effect are almost simultaneous.

One trick for early detection of a wiping bearing employs a vibration analyzer. Place the probe axially on the bearing housing, with the instrument set to read velocity. The friction caused by a wiping bearing will be indicated as a mechanical rub as the velocity starts to climb, even before the temperature changes. The extra few seconds of warning obtained in this manner have saved many 2-pole sleeve bearings.

End float and magnetic center. When a sleeve bearing motor is energized, the rotor should remain centered between the thrust shoulders. During coast-down the rotor may float and contact either thrust shoulder, especially if the motor is not level. To avoid possible damage during extended coastdown, plug-reverse the motor (with reduced voltage) to stop it quickly. When this is not practical, use mechanical means to position the shaft near its mechanical center.

End float and magnetic center are important considerations when rebuilding sleeve-bearing machines. The magnetic center should be clearly marked during the final test run. A suggested procedure is to spray the shaft extension with blue layout fluid and then clearly scribe the magnetic center.

Total end float should be checked. The mechanical center and the magnetic center should closely coincide. In some cases, the magnetic center may "hunt," especially with 2-pole machines which have weaker axial centering forces.

Bearing temperature. Bearing temperature varies according to rotor weight, rotational speed and oil used. Sleeve bearing temperatures above 150° F (65° C) can usually be improved by fitting. Some motor designs are subject to inherently higher temperatures, in rare cases as high as 220° F (105° C). When monitoring bearing temperatures during no-load testruns, it is important to factor in the temperature rise of the motor. See Table 8-10 for a general rule of thumb regarding monitoring of bearing temperatures.

TABLE 8-10: MONITORING BEARING TEMPERATURES

	Lubricants		
	Standard	Synthetic	
Normal	176°F (80°C) or lower	230°F (110°C)	
Alarm	194°F (90°C)	248°F (120°C)	
Shutdown	212°F (100°C)	266°F (130°C)	

Babbitt bearings require extra attention during inspection, especially when the purpose is to determine the cause of failure. Treating the symptoms rather than the problem is common because of the difficulty in interpreting evidence. Working with the end-user is essential when trying to determine why a sleeve bearing failed. Machine history and knowledge of the application system–not just the motor–are key to satisfactory service.

Note: This article was first published as *EASA Tech Note 38* (January 2001). It was reviewed and updated as necessary in October 2018.

Procedures for checking end play in ball bearing machines

By Chuck Yung, EASA Senior Technical Support Specialist

After repair, an electric motor ran fine in the service center but developed high bearing temperatures shortly after the customer installed it. The bearings failed after only a few hours of operation at full load.

The first response for most technicians in this situation would be to suspect an alignment problem. But another possibility to consider is insufficient end play. An electric motor must have room for thermal expansion of the shaft, or bearing life will be reduced greatly.

Because the frame dissipates heat generated in the rotor and windings, the rotor/shaft assembly is considerably hotter than the stator frame. Thermal expansion of the shaft therefore exceeds that of the frame. To compensate, allowance must be made for the shaft to "grow" axially. Failure to do so will preload both bearings, causing rapid failure of the one with the lower load-carrying capacity. That usually is the smaller bearing on the opposite drive end (ODE).

For carbon steel shafts, the length will increase 0.0000067" per inch of shaft length per °F of temperature change (0.0000117 mm per millimeter of shaft length per °C). A 30" (762 mm) long shaft would therefore grow by 0.016" (0.4 mm) if subjected to a temperature rise of 80°F (45°C):

 $30 \ge 0.0000067 \ge 80 = 0.016$ " increase in length 762 \u03ex 0.0000117 \u03ex 45 = 0.4 mm increase in length

Unless there is at least that much extra room between one bearing and the shoulder in the end bracket, thermal growth will preload the bearing.

Most designs "locate" one end of the shaft–usually the drive end (DE)–and provide sufficient room at the other end for thermal expansion. That means the DE bearing is held captive by the housing and bearing cap to prevent axial displacement of the coupling. Too much "play" in the drive end of the motor shaft can damage the driven equipment.

When a bearing failure damages the shaft, it is often difficult or impossible to determine the original location of the bearing shoulder. This uncertainty requires a reliable method for determining whether the repaired motor has adequate provision for thermal expansion. By following some basic steps, the assembly mechanic can assure that the motor has this room.

Measure room available for shaft growth. With both end brackets installed, and the bearing caps tight, place a dial indicator on the ODE bracket to measure axial shaft movement. Using a soft-face mallet, tap the shaft towards the DE, zero the indicator, and then tap the shaft towards the ODE. The only movement should be internal play in the bearing.

Next, loosen both bearing caps and move the shaft towards the ODE. The measurement obtained is the available room for thermal growth of the shaft. There must be enough room

Proper end play.

FIGURE 8-46

for the shaft to grow thermally without preloading the bearings (compressive preload $\rightarrow \leftarrow$). (**Rule of thumb**: Allow approximately 0.010" per foot (~1 mm per meter) of shaft length between bearings.)

To increase the room for thermal growth, remove the ODE bracket and machine shoulder "A" (Figure 8-46).

Make sure bearing caps do not preload bearings. If the motor has enough allowance for thermal growth, the last step is to make sure the bearing caps are not preloading the bearings by pulling outwards (tension preload). To check this, first tighten the DE bearing cap. This pulls the bearing into its normal operating position.

Now zero the indicator, loosen the DE bearing cap and tighten the ODE bearing cap. If the shaft moves, then the bearing caps are preloading the bearings. If this step reveals a tension preload ($\leftarrow \rightarrow$), either put a spacer between the ODE bearing cap and bracket or machine the bearing cap shoulder.

If preload is not corrected, one of two things will happen. Either a bearing will be dislocated from the shoulder, or the bearing L_{10h} life will be decreased. The reduction in L_{10h} bearing life will be proportional to the amount of preload. By way of example, a .040" (1 mm) preload can decrease L_{10h} bearing life to a matter of hours.

Tip: When a stock motor is modified for a direct-couple application, the DE roller bearing should be replaced with a standard ball bearing. Because the roller bearing is held captive, and the ODE bearing served to locate the shaft, this modification requires that the end play be adjusted.

One approach would be to assemble the motor, check the end play as described above, and then dismantle it to do the appropriate machine work. A good shortcut is to machine 0.020" (0.5 mm) from the ODE bearing cap face "B" (Figure 8-46) and then machine the bearing fit of the ODE end bracket "A" (Figure 8-46) 0.040" (1 mm) deeper. This ensures that the bearings will not be pre-loaded in either direction. Final end play checks should still be made as outlined above, but the shortcut virtually guarantees that the motor will not have to be dismantled for further machine work.

BALL-TO-ROLLER CONVERSION

- Measure the DE shaft journal. The journal fit for a roller bearing is larger than that of a corresponding ball bearing, and mounting a roller bearing on a journal that is not within tolerance will result in premature bearing failure. If necessary, electro-plate the journal to size.
- A ball bearing on the DE is the locating end, and the ODE requires room for thermal expansion. When installing a roller bearing on the DE, the ODE bearing must become the locating (captured) end.
- Measure the ODE housing depth, subtract the width of the bearing and the lip of the bearing cap.
- Machine a spacer of that dimension and place it in the ODE bearing housing.
- Be sure to use high pressure grease for the roller bearing, and install an auxiliary nameplate on the motor to indicate the DE is equipped with a roller bearing.
- Note: This article was first published as *EASA Tech Note 42* (October 2005). It was reviewed and updated as necessary in September 2019.

8.11 REFERENCED STANDARDS

The following standards are referenced in this section of the *EASA Technical Manual*.

- ANSI/ABMA Std. 7-1995 (R2001, S2013): Shaft and Housing Fits for Metric Radial Ball and Roller Bearings (Except Tapered Roller Bearings) Conforming to Basic Boundary Plan. American Bearing Manufacturers Association, Inc. and American National Standards Institute. New York, NY, 2001, 2013.
- ANSI/ABMA Std. 20-2011: Radial Bearings of Ball, Cylindrical Roller and Spherical Roller Types–Metric Design. American Bearing Manufacturers Association, Inc. and American National Standards Institute. New York, NY, 2011.
- ISO Std. 15:2017: *Rolling Bearings–Radial Bearings: Boundary Dimensions, General Plan.* International Organization for Standardization. Geneva, Switzerland, 2011.
- ISO Std. 104:2015: *Rolling Bearings Thrust Bearings Boundary Dimensions, General Plan.* International Organization for Standardization. Geneva, Switzerland, 2015.
- ISO Std. 113:2010: *Rolling Bearings Plummer Block Housings - Boundary Dimensions*. International Organization for Standardization. Geneva, Switzerland, 2010.
- NEMA Stds. MG 1-2016: *Motors and Generators*. National Electrical Manufacturers Association. Rosslyn, VA, 2016.

This page intentionally left blank.